首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 192 毫秒
1.
利用高能球磨和真空热压烧结方法制备了添加Ta和Ag的镍基复合材料. 考察了复合材料在宽温域范围内的摩擦磨损性能和力学性能,利用SEM、XRD等表征分析其物相组成、磨损机理及断裂机制. 结果表明: 热压烧结过程中,Ta与石墨模具中的C反应生成TaC陶瓷相并在基体中弥散分布;Ta、Ag的加入降低了材料的摩擦磨损,NiCrMoAl-Ta-Ag复合材料实现了在室温~800 ℃的连续润滑,室温时Ag提供润滑作用,中温时由磨屑和Ag形成局部润滑膜,800 ℃时磨损表面形成了含氧化物、钼酸银和Ag的润滑膜. 加入Ta极大提高了材料的机械性能,NiCrMoAl-Ta合金在室温~1 000 ℃具有优异的机械性能,归因于原位生成的TaC和Al2O3陶瓷相的弥散强化;材料的断裂机制随温度升高由微孔聚集型断裂转变为以微孔聚集型和氧化断裂为主的断裂.   相似文献   

2.
采用高能球磨结合喷雾造粒制备喷涂喂料,利用等离子喷涂方法制备Ni_3Al基高温自润滑复合涂层,通过HT-1000销-盘式高温摩擦试验机测试大气气氛不同温度下涂层的摩擦磨损性能,并采用SEM、EDS和Raman等表征分析涂层微观组织、物相组成和摩擦磨损机理.结果表明:涂层在25℃至800℃具有良好的自润滑性能,摩擦系数为0.14~0.42,磨损率为2.41×10~(–4)~5.76×10~(–4) mm~3/(Nm). 25℃到400℃之间,随温度升高,Ni_3Al金属间化合物韧性和软金属银塑性变形能力均提高,形成了有效的转移润滑膜,从而提高了涂层摩擦学性能,涂层磨损形式主要为脆性断裂、磨粒磨损和黏着磨损;600℃时软金属Ag过度软化,BaF_2/CaF_2共晶脆-塑性转变不完全,磨损表面不能形成完整致密的润滑膜,摩擦系数和磨损率大幅升高,涂层的磨损形式主要为剥层磨损和磨粒磨损;800℃时磨损表面形成富含NiO、Ag_2MoO_4和NiCr_2O_4等高温润滑剂的连续光滑釉质层,摩擦系数和磨损率大幅降低,磨损形式主要为氧化磨损和黏着磨损.  相似文献   

3.
利用高能球磨和真空热压烧结技术制备了Ni Cr Mo和Ni Cr Mo Al两种不同的合金.研究了Al元素对合金的微观组织结构和机械性能的影响,考察了不同温度(RT~900℃)条件下合金的摩擦磨损性能,并对磨损机理进行分析.结果表明:Al元素的加入减少了合金粉末的团聚,促进了烧结过程中合金晶粒的长大,提高了合金的致密度和硬度;尤其在高温摩擦环境中,与Ni Cr Mo合金相比,含有Al元素的Ni Cr Mo Al合金能在摩擦表面形成由Mo O3、Ni O和Ni Mo O4等组成的摩擦层,且没有Cr2O3硬质相的生成,极大提高了其高温下的摩擦学性能.  相似文献   

4.
Ni3Al基自润滑复合材料摩擦学性能的研究   总被引:1,自引:1,他引:0  
采用真空热压烧结方法制备了Ni3Al基自润滑复合材料,通过HT-1000型球盘式高温摩擦仪分别测试了不同条件下Ni3Al基自润滑复合材料的摩擦磨损性能.结果表明:复合材料在20~1 000℃均具有良好的自润滑性能,其摩擦系数在0.24~0.43之间.研究发现复合材料在低载(5 N、滑动速度为0.2 m/s)低温(20~400℃)下具有最低的摩擦系数(0.24~0.29),但在低载高温下(600℃以上)摩擦系数较高(0.39~0.41);而在高载(20 N)时在整个温度测试区间(20~1 000℃)拥有低而稳定的摩擦系数(0.28~0.31).Ni3Al基自润滑材料优异的高温摩擦学性能归因于高温下材料摩擦表面形成的银、氟化物、氧化物以及钼酸盐等低剪切化合物的协同润滑作用.  相似文献   

5.
Fe-Ni基高温自润滑复合材料摩擦磨损特性研究   总被引:2,自引:2,他引:0  
本文中采用滑动磨损试验方法研究了以PbO和WS2为润滑组元的复合材料与440C不锈钢配副在25~600℃温度范围内的摩擦磨损特性.通过X射线衍射仪分析发现复合材料中含有铬的硫化物等高温润滑物质生成.使用扫描电镜和金相显微镜进一步分析了材料摩擦表面形貌.结果表明:在500 ~ 600℃范围内,PbWO4、CrxSx+1等各种金属化合物在摩擦表面形成了较完整的润滑膜,产生了自润滑能力,具有优良的减摩耐磨性能.润滑膜材料可向摩擦对偶表面转移,在一定程度上阻止了复合材料与440C不锈钢对摩材料的直接接触,显著降低了材料摩擦系数和磨损率,实现了高温自润滑性能.本文进一步探索了单一润滑组元润滑膜和两种润滑组元润滑膜的承载能力,发现两种固体润滑组元产生的协同润滑效应显著改善了润滑膜的润滑性能.  相似文献   

6.
采用等离子喷涂(APS)技术制备NiAl-TiO_2/Bi_2O_3纳米复合涂层,通过高能球磨及喷雾造粒制备TiO_2/Bi_2O_3纳米复合喂料,考察纳米结构TiO_2/Bi_2O_3的不同配比对复合涂层显微结构、力学及摩擦磨损性能的影响.结果表明:复合涂层组织致密,各相分布均匀,采用TiO_2/Bi_2O_3纳米复合喂料使涂层呈现出典型的双态区域,涂层结合强度均高于40 MPa.单纯TiO_2纳米喂料制备的复合涂层中低温摩擦磨损性能较差,TiO_2/Bi_2O_3的复配改善了涂层中低温的塑性和摩擦学性能,并提高了涂层的高温润滑性能,其复合涂层磨损率均低于7×10-5 mm~3/(N·m),摩擦系数在800℃时可低至0.1左右,但过高的Bi_2O_3含量会导致涂层硬度降低,磨损率增加.高温摩擦促进了Bi_4Ti_3O_(12)、NiTiO_3等三元氧化物润滑相的生成,其与TiO_2、NiO在磨损表面形成光滑连续的摩擦层使涂层具有优异的高温摩擦学性能.  相似文献   

7.
Ti_3SiC_2-Al_2O_3复合材料在不同液体介质中的摩擦磨损性能   总被引:2,自引:1,他引:1  
采用真空热压烧结工艺制备了Ti3SiC2和Ti3SiC2-Al2O3复合材料,考察了其与GCr15钢球配副在无润滑条件、去离子水和乙醇介质中的摩擦磨损性能.研究结果表明:在无润滑条件和去离子水中,2种摩擦副的摩擦学性能较差;在乙醇中,2种摩擦副均表现出优异的摩擦学性能;从无润滑条件到去离子水和乙醇介质中,2种摩擦副的磨损机理受从钢球到盘的单向转移以及摩擦氧化控制.与单一Ti3SiC2材料相比,Ti3SiC2-Al2O3复合材料具有更好的摩擦学性能.  相似文献   

8.
滑动速度对IS304涂层自润滑磨损机理的影响   总被引:2,自引:0,他引:2  
采用感应烧结技术制备出润滑相细小且分布均匀的自润滑涂层.其中润滑相Ag粒子尺寸为5μm左右,氟化物粒子尺寸为1μm左右,强化相Cr2O3粒子尺寸小于1μm.研究表明低速磨损时磨损面比较粗糙,磨损机理主要为磨粒磨损与疲劳磨损;而高速磨损时磨损面比较光滑,虽然磨粒磨损与疲劳磨损依然为涂层的磨损机理,但磨损面上存在明显的Ag润滑膜.Ag润滑膜的出现使得涂层的摩擦系数降低.Ag润滑膜的出现与接触面摩擦产生的摩擦热有关.滑动速度越高,接触面产生的摩擦热会使局部区域的瞬态温度升高,从而使得热膨胀系数较大的Ag粒子从基体Ni Cr中溢出到表面,并在压力和摩擦力的作用下发生塑性变形从而形成Ag润滑膜.采用溢出体积计算法计算得滑动速度为1 m/s时,瞬态温升为296℃,该温升明显高于采用Ansys有限元模型计算得到的温升.  相似文献   

9.
Cu-2Ni-5Sn-(石墨+PbO)自润滑复合材料高温摩擦学性能的研究   总被引:1,自引:0,他引:1  
采用粉末冶金工艺制备了Cu-2Ni-5Sn-(石墨+PbO)系自润滑复合材料,并采用XRD、SEM、万能材料试验机和高温摩擦磨损试验机等研究了微观组织、力学性能和室温至500℃下的摩擦学性能.结果表明:石墨+PbO复合固体润滑剂质量分数为8%时,该复合材料综合摩擦磨损性能最优.Ni的加入能提高基体的力学性能.随着温度的增加,该复合材料的摩擦系数几乎保持稳定,磨损率先缓慢增加,后急剧增加.室温时磨损表面形成以石墨为主成分的润滑膜起主要润滑作用,磨损机理主要为轻微塑性变形和局部剥落.300℃时,由PbO(Fe_2O_3)6、石墨和Cu_2O组成的致密润滑膜是Cu-2Ni-5Sn-(石墨+PbO)自润滑复合材料具有良好润滑性的主要原因,磨损机理主要包括复合材料塑性变形、局部剥落和轻微的黏着磨损.500℃时,主要由PbO(Fe_2O_3)6、石墨、Cu_2O和Cu O组成的复合润滑膜起到了润滑作用,磨损机理主要为石墨周边区域基体脱落及塑性变形引起的剥落和氧化磨损.  相似文献   

10.
原位内生NiAl-Al2O3-TiC的高温磨损特性   总被引:3,自引:0,他引:3  
采用滑动磨损试验方法研究了原位内生NiAl-Al2O3-TiC与SiC陶瓷盘配副在600℃~900℃下的摩擦磨损特性.结果表明:在700℃~900℃范围内,NiAl-Al2O3-TiC表现出优异的自润滑性能,摩擦系数和磨损率均低于Ni基高温合金K44;600℃的摩擦系数和磨损率高于K44.产生自润滑性能的原因主要是由于磨损表面生成了由纳米氧化物构成的1~2μm保护层,该保护层具有自润滑性能,并部分地转移到对摩副表面,消除了NiAl-Al2O3-TiC与SiC之间的直接磨损.保护层的形成机制是氧化物颗粒的微区热压烧结.NiAl-Al2O3-TiC对保护层起到传递应力和支撑作用,随着试验温度的升高,NiAl-Al2O3-TiC强度和硬度的降低导致保护层的开裂和脱落.  相似文献   

11.
采用SRV摩擦磨损试验机在室温及100 ℃下考察了两种离子液体(L-B106 和L-P106)、丙三醇、水作为Si3N4-Ti3SiC2摩擦副润滑剂的摩擦学行为,利用扫描电子显微镜(SEM)及X光电子能谱(XPS)对磨损表面进行了分析.结果表明:室温、20 N条件下,两种离子液体和丙三醇抗磨和减摩性能相当,室温、100 ℃条件下,L-P106相较于L-B106具有更好的润滑性能,且其抗磨和减摩性能均优于丙三醇,作为Si3N4-Ti3SiC2摩擦副润滑剂具有在苛刻环境条件下使用的应用前景. XPS分析结果表明:Ti3SiC2材料在摩擦过程中在摩擦热作用下生成了SiOx、TiO2,进而有效提高了Ti3SiC2摩擦副材料的抗磨损性能;此外,离子液体中的活性元素在Si3N4-Ti3SiC2摩擦副表面发生了复杂的摩擦化学反应,生成了由氟化钛、磷酸钛及硼酸钛等组成的具有减摩和抗磨性能的边界润滑膜.  相似文献   

12.
Mo/Al2O3复合材料的耐磨性   总被引:1,自引:0,他引:1  
无压烧结制备了不同组分的Mo/Al2O3复合材料样品,对样品的磨损行为和磨损机理进行了研究,并用电子探针分析了其磨损形貌.结果表明:Mo/Al2O3复合材料的磨损率随Mo含量的增加呈上升趋势,在30vol.%Mo时出现峰值;摩擦系数随着Mo含量的增加而增大,20vol.%Mo样品的摩擦系数较小;Mo含量不超过60%时,当出现Mo的连续相或者Al2O3的连续相时复合材料表现出较好的耐磨性;Mo含量较低时磨损机理表现为脆性脱落,而Mo含量较高时材料的磨损机理主要为磨粒磨损.  相似文献   

13.
Al2O3-40%TiO2和Cr2O3等离子喷 涂层的摩擦 磨损特性   总被引:6,自引:0,他引:6  
  相似文献   

14.
MoSi2-Mo5Si3-Mo5SiB2复合材料是一种很有发展前景的高温耐磨材料,但MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的干滑动摩擦磨损性能尚不清楚. 本文中通过销-盘式干滑动摩擦磨损试验,考察了MoSi2-Mo5Si3-Mo5SiB2/SiC配对副在不同温度(25~1 000 ℃)和载荷下(2.5~10 N)的摩擦学特性. 结果表明:试验温度和载荷对MoSi2-Mo5Si3-Mo5SiB2/SiC配对副的摩擦系数影响较大,而对其磨损率影响较小. 载荷为5 N时,在25~1 000 ℃区间,摩擦系数和磨损率分别在0.11~0.43和0.513×10-7~0.544×10-7 mm3/(N·m)范围;在25~400 ℃时,磨损机制以轻微的氧化和黏着磨损为主,在600~1 000 ℃磨损机制主要表现为严重的氧化和黏着磨损. 在1 000 ℃时,随着载荷(2.5~10 N)的增加,摩擦系数和磨损率分别为0.29~0.38和0.540×10-7~0.547×10-7 mm3/(N·m);载荷为2.5~10 N时,始终存在黏着和氧化磨损;载荷为7.5~10 N时,材料磨损表面还伴随碾压塑性变形的特征.   相似文献   

15.
采用热压烧结的方法制备了添加WS2质量百分数为10%、20%和30%的Fe-28Al-5Cr基复合材料,通过XRD和SEM等手段分析了样品的相组成和组织结构.利用自制的真空摩擦试验机测试了样品在4×10-4Pa真空下的摩擦学性能.研究结果显示:通过与WS2的复合能够显著降低Fe3Al基金属间化合物在真空条件下的摩擦系数,但三种不同WS2含量复合材料的摩擦系数差别不大.随着WS2含量增加,复合材料的磨损率逐渐降低,特别是30%复合材料的磨损率较纯Fe-28Al-5Cr的磨损率低约1个数量级.滑动速度和载荷对三种材料的摩擦系数和磨损率均有一定的影响.纯Fe3Al的磨损表面较为粗糙,出现严重的剥落坑和剥落痕迹,磨损机理为严重的疲劳磨损.添加质量百分数为10%WS2的复合材料的磨损机理为磨粒磨损和疲劳磨损;添加WS2质量百分数为20%和30%的复合材料,其磨损表面相对较为光滑平整,磨损机理为轻微剥落.因此,在复合材料制备中添加WS2能够显著提高Fe3Al金属间化合物的真空摩擦学性能.  相似文献   

16.
通过脉冲电沉积技术在铝合金基体表面制备了Ni-W-ZrO2复合镀层,利用光学显微镜、扫描电镜、X射线衍射仪、能谱仪、维氏硬度仪、电化学工作站和马弗炉等设备分别对复合镀层的截面形貌、元素分布、表面硬度、耐蚀性和抗高温氧化性分别进行了表征和测试,研究了Y(NO33添加量对复合镀层性能的影响.研究结果表明:所制备复合镀层截面平整、成分分布均匀,基体与镀层之间结合良好,ZrO2颗粒弥散分布于Ni-W基质金属之中,镀层厚度约为130 μm;Y(NO33的加入能显著提高复合镀层的硬度、抗高温氧化性和耐蚀性;当硝酸Y添加量为1.5 g/L时,Ni-W-ZrO2复合镀层的综合力学性能达到最佳.  相似文献   

17.
An experimental study of evaporation heat transfer coefficients for single circular small tubes was conducted for the flow of C3H8, NH3, and CO2 under various flow conditions. The test matrix encompasses the entire quality range from 0.0 to 1.0, mass fluxes from 50 to 600 kg m−2 s−1, heat fluxes from 5 to 70 kW m−2, and saturation temperatures from 0 to 10 °C. The test section was made of circular stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm, and a length of 2000 mm in a horizontal orientation. The test section was uniformly heated by applying electric power directly to the tubes. The effects of mass flux, heat flux, saturation temperature, and inner tube diameter on the heat transfer coefficient are reported. Among the working refrigerants considered in this study, CO2 has the highest heat transfer coefficient. Laminar flow was observed in the evaporative small tubes, and was considered in the modification of boiling heat transfer coefficients and pressure drop correlations.  相似文献   

18.
将石墨和硫酸钡按一定比例复合作为弱界面层,通过铺层-冷压-放电等离子烧结工艺制备了Al2O3/Graphite-BaSO4层状复合材料. 考察了复配润滑剂的组分对层状复合陶瓷在室温至800 ℃连续加热过程中自润滑性能的影响规律,并通过磨损表面分析探讨了其在宽温域下的协同润滑机制. 结果表明:通过复配在室温和中高温度段具有优异自润滑性能的固体润滑剂,并借助仿贝壳材料独特的层状结构特征,可有效改善氧化铝陶瓷在不同温度段的摩擦学性能,进而实现材料在较宽温度范围内的连续润滑. 基于润滑相组分优化的复合材料在室温至800 ℃温度范围内与Al2O3栓对摩时的摩擦系数可保持在0.28~0.48之间,比块体Al2O3陶瓷/Al2O3栓摩擦副的摩擦系数降低了近60%.   相似文献   

19.
本文中考察了Ti3SiC2/Cu摩擦副在干摩擦和微量离子液体润滑条件下的载流摩擦学特性.在干摩擦条件下,Ti3SiC2/Cu摩擦副的摩擦系数值为0.6~0.75.当滑动速度从0.11增至0.33 m/s时,接触电阻降低小,在Ti3SiC2栓磨损表面有Cu的转移膜形成.当滑动速度为0.44和0.56 m/s时,栓/盘接触不稳定并且产生电火花,表明在机械磨损和电磨损共同作用下Ti3SiC2栓发生了严重磨损.在微量离子液体润滑条件下,Ti3SiC2/Cu摩擦副处于边界润滑状态,随着滑动速度的提高,摩擦系数由0.08增至0.2.当滑动速度高于0.33 m/s时,产生长约数厘米、平均直径53μm的弯曲缠绕的铜丝,这是相对较硬的Ti3SiC2对Cu盘犁削作用的结果.铜丝将离子液体"扫离"了摩擦表面,并且对摩擦学性能和电性能造成不利影响.  相似文献   

20.
采用喷雾干燥法对溶胶-凝胶法合成的系列A l2O3/TiO2纳米复合粉体进行造粒,使用等离子喷涂技术制备系列A l2O3/TiO2纳米复合涂层.对涂层结构和形貌分析表明所制备的A l2O3/TiO2纳米复合涂层形成了具有熔融区和半熔融区的双区形态的纳米复合结构.使用UMT-2MT试验机研究了复合涂层的摩擦磨损性能,结果表明复合涂层的磨损率随TiO2含量的增加表现出先降低而后增大的趋势,TiO2质量百分数为10%的纳米复合涂层的磨损率最低;而涂层的摩擦系数随TiO2含量的增加变化不大.复合涂层的磨损机制为裂纹扩展导致的磨损剥落.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号