首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对锌浸出渣处理过程中存在有价金属回收率低、危废铁渣量大等关键技术难题,本文提出了锌浸出渣Ⅰ段控铁低酸加压浸出.Ⅱ段深度高酸加压浸出的两段逆流加压酸浸工艺路线。以某湿法炼锌企业产出的含锗锌浸出渣为研究对象,重点研究了Ⅰ段控铁加压低酸浸出过程中锌、锗、铁的浸出行为,铁的高温水解沉淀行为以及铁物相演变规律。结果表明:温度是影响铁高效沉淀与铁物相组成的关键因素,升高温度能促进Fe3+水解生成铁矾(MFe3(SO4)2(OH)6),并有利于铁酸盐(MeFe2O4)的溶解。降低初始酸度、延长反应时间均有利于铁矾晶体的发育长大;在高酸体系下,铁矾的热力学稳定性降低,且不利于Fe3+的水解沉淀,但通过升高反应温度可使Fe3+水解生成铁矾和赤铁矿(Fe2O3)等沉铁物相,达到铁高效沉淀分离的目的;因锌浸出渣中铁主要以Fe3+形式存在,故氧分压...  相似文献   

2.
过渡层红土镍矿中的镁质矿中和沉矾浸出   总被引:1,自引:0,他引:1  
采用沉矾浸出法将铁质矿浸出液对镁质矿进行沉矾浸出。结果表明:镁质矿酸浸过程中,在镁质矿粒度为106~150μm、搅拌强度为150 r/min、终点pHe值为1.3、温度为95℃的条件下,浸出镁质矿3 h,镍、镁、铁的浸出率分别为93.34%、78.28%、26.4%;在沉矾浸出过程中,在反应温度为95℃、搅拌强度为150 r/min、硫酸钠中的钠与形成黄钠铁矾中的钠的摩尔比x为1.3、镁质矿粒度为106~150μm、反应终点pHe为1.3±0.2的条件下,沉矾浸出5 h,镍浸出率能达到92%,镁浸出率在74%以上,铁质矿浸出液除铁率达到87%以上,铁质矿浸出液中铁的浓度在15.87~42.16 g/L的范围内,对镁质矿的镍、镁浸出及铁质矿浸出液中Fe的浓度没有显著的不利影响,溶液中铁基本上控制在4 g/L以下。  相似文献   

3.
在H2SO4-Fe2(SO4)3体系中研究载金黄铁矿的浸出动力学,探讨反应温度、Fe3+浓度、硫酸浓度、搅拌速度等对黄铁矿浸出的影响规律。结果表明:在H2SO4-Fe2(SO4)3体系中,在30~75°C下黄铁矿浸出过程主要受化学反应控制Fe3+浓度与黄铁矿的浸出呈正相关,通过Arrhenius经验公式求得浸出表观活化能为51.39 k J/mol。EDS与XPS分析结果表明:黄铁矿氧化过程中硫的氧化经一系列中间形态,最终被氧化成硫酸根,并伴有部分元素硫生成,符合硫代硫酸根氧化路径机理。  相似文献   

4.
本文探讨了西北铅锌冶炼厂锌系统“中性浸出一两段热酸浸出--黄钾铁矾法除铁”浸出工艺及所存在的问题,试验研究了热酸浸出酸度及预中和终酸控制条件,分析了影响铅银渣、铁矾渣含锌和浸出回收率的因素,由试验研究结果、生产实践、参照设计参数,综合分析确定了适合目前生产状况下的浸出工艺条件,取得了较好的技术经济指标。  相似文献   

5.
从废旧锂离子电池中分离回收钴镍锰   总被引:3,自引:0,他引:3  
提出一种新型的从废旧锂离子电池中分离回收钴镍锰的工艺.该工艺采用物理擦洗-稀酸搅拌浸出的方法分离集流体与活性物质,采用H2SO4+H2O2为浸出剂对活性物质进行浸出,然后采用黄钠铁矾法去除浸出液中的铁,再采用N902萃取分离铜,通过水解沉淀法除铝,最后采用碳酸盐共沉淀法制备镍钴锰碳酸盐前躯体.结果表明:最优浸出条件为液固比10:1、H2SO4浓度2.5 mol/L、H2O2加入量2.0 mL/g(粉料)、温度85℃、浸出时间120 min;在此条件下,钴、镍和锰的浸出率分别达到97%、98%和96%;除去浸出液中的铁、铜和铝后,钴、镍和锰的损失率分别为1.5%、0.57%和4.56%;总体来说,废旧锂离子电池中钴、镍和锰的回收率均可以达到95%.  相似文献   

6.
研究了Ce4+在以2-(二乙基己基)磷酸(P204)为流动载体,煤油和P204的混合溶液作为膜溶液,膜溶液和解析剂H2SO4溶液组成更新相的反萃更新中空纤维液膜(SRHFLM)中的提取行为;考察了料液酸度、更新相H2SO4浓度、膜溶液与H2SO4溶液体积比、不同载体浓度对Ce4+提取的影响,得出了以下Ce4+最优提取条件:更新相H2SO4溶液浓度2.50mol/L,膜溶液与H2SO4溶液体积比2:1,载体浓度控制在0.200mol/L,料液相酸度为0.05mol/L。在最优分离条件下,当Ce4+的初始浓度为1.00?10-4mol/L时,Ce4+在45min时提取率达到92.2%。最后提出了Ce4+在SRHFLM中的学渗透系数动力学模型。  相似文献   

7.
还原酸浸法从低品位水钴矿中提取铜和钴   总被引:2,自引:0,他引:2  
以Na2SO3为还原剂从水钴矿还原酸浸液中提取铜和钴,研究了还原剂种类及用量、浸出温度、硫酸浓度等因素对水钴矿还原酸浸过程中有价金属铜和钴浸出率的影响。结果表明,Na2SO3是较适宜的还原剂;在还原剂用量为水钴矿原矿质量的10%、硫酸浓度为3 mol/L、浸出温度为60℃、液固比为2-1、浸出时间为60 min的条件下,铜和钴的浸出率分别达99.06%和98.87%。并提出了"M5640萃铜→黄钠铁矾法除铁→碳酸钠除铝→氟化钠除钙、镁→蒸发结晶得钴产品"的后续分离净化流程,能有望应用于水钴矿及类似物料中有价金属的提取与分离的工业生产。  相似文献   

8.
采用铅黄铁矾去除硫酸体系中的铁   总被引:1,自引:0,他引:1  
研究硫酸体系中铅黄铁矾的形成条件,考察pH值、温度、PbSO4用量、时间和晶种浓度对铅黄铁矾形成及除铁率的影响。结果表明:当pH>0.7,温度大于75℃时,形成铅黄铁矾;在维持溶液pH为1.3、温度95℃、硫酸铅的加入量为理论量的1.2倍、晶种浓度为8 g/L、时间2.5 h的最优条件下,平均除铁率高于95%;得到的铅黄铁矾渣平均含Pb 22.47%、Fe 23.74%、Zn 1.96%;经硫酸化焙烧水浸或直接用锌废电解液浸出锌和铁后,浸出渣含Pb均大于60%,可返回作沉矾剂,亦可作为炼铅的原料。  相似文献   

9.
对硅锌矿在(NH4)2SO4-NH3-H2O体系中的浸出行为进行了系统研究,揭示浸出反应机理,阐明其难以浸出的内在原因。结果表明:硅锌矿浸出反应方程为Zn2SiO4(s)+(2i-4)NH3(aq)+4NH4+=2[Zn(NH3)i]2++SiO2(s)+2H2O(l),i=1~4。浸出中,硅锌矿中的硅溶解进入溶液,再以无定形SiO2形态从溶液中析出。SiO2在(NH4)2SO4-NH3-H2O体系中的溶解度很低,仅略高于0.3 g/L,而其从溶液中的析出速度非常缓慢,是硅锌矿在该体系中难以浸出的主要原因。当液固质量比从5提高至500时,锌浸出率将从2.72%提高至84.15%。  相似文献   

10.
钨渣回收制备四氧化三锰新工艺   总被引:2,自引:0,他引:2  
研究从钨渣中回收锰的新工艺,通过钨渣的低温硫酸化焙烧、烧结块浸出、浸出液除杂、溶液中水解沉锰及氢氧化锰氧化获得Mn3O4粉末,采用SEM和XRD对产品粉末进行分析。结果表明:在浓硫酸过量150%、焙烧时间90 min、浸出温度98℃、浸出时间120 min的条件下,Mn浸出率达到88.9%。浸出液可以通过硫化物沉淀除重金属、硫酸复盐沉淀法深度净化除杂、中和水解除Fe,水解沉锰也有一定的净化作用,溶液pH值为6.56时,除铁率达到99.91%。净化液经水解沉锰后采用10%H2O2氧化,在氢氧化锰氧化过程中,溶液pH值对产物物相的影响较大;溶液pH值为8时在50℃沉锰,并以过量150%的H2O2氧化反应20min,获得粒度小于0.1μm的Mn3O4粉末。  相似文献   

11.
对N235萃取除铁进行研究,考察H2O2用量、料液初始pH、萃取剂浓度、萃取剂组成、萃取时间对萃取的影响以及H2SO4浓度、反萃时间对反萃的影响,设计错流萃取过程并绘制反萃平衡等温线,对萃取剂转型条件进行研究。结果表明:H2O3+2用量为理论量3.85倍时可将Fe2+完全氧化成Fe,并采用有机相组成30%(体积分数)N235+10%(体积分数)TBP+磺化煤油作为萃取剂,料液初始pH为0.11,其最佳萃取条件如下:萃取温度25℃,萃取时间2 min,相比O/A为1:1。经过4级错流萃取,其Fe3+萃取率可达96.96%,Cu2+、Co2+、Ni2+损失率分别为3.04%、1.39%和3.84%,有机相负载采用0.3 mol/L硫酸可反萃得到纯度为98.87%的Fe2(SO4)3溶液,其最佳反萃条件为反萃温度25℃,反萃时间6 min,相比O/A=1:1。经两级逆流反萃,Fe3+反萃率达99.12%,反萃铁后的负载酸有机相经Na2CO3中和转型,返回使用。  相似文献   

12.
蔡鑫  杨天足  陈霖  刘志楼 《贵金属》2014,35(2):22-27
利用热重分析仪、X射线衍射仪、扫描电镜分析了高砷高硫难处理金矿二次焙砂氰化尾渣硫酸熟化焙烧中铁物相变化及其终始状态矿物学特征。得出铁物相转变过程为:Fe2O3→HFe(SO4)2·4H2O→Fe2(SO4)3·5H2O→Fe2(SO4)3→Fe2O3。扫描电镜分析结果显示,硫酸熟化焙烧破坏了原有矿物有序结构,打开了包裹金的氧化铁,从而提高金的氰化浸出率。  相似文献   

13.
黄钾铁矾的生成对Sarcheshmeh生物堆浸硫化铜矿有不利影响。实验研究了在嗜酸氧化亚铁硫杆菌存在的情况下,生长介质中Fe(II)的初始浓度、pH及温度影响黄钾铁矾沉淀形成的机理。产生最多Fe(III)沉淀的条件为:硫酸亚铁浓度50 g/L、初始pH 2.2、温度32°C。Fe(III)沉淀的生成影响了对嗜酸氧化亚铁硫杆菌有重要作用的离子的浓度,比如:Fe3+、SO 2?4、K+、PO 3?4、Mg2+。对于Fe3+和K+,他们有相似的模式,这些离子共沉淀而形成黄钾铁矾的组分。在pH高于1.6时,由于PO 3?4与黄钾铁矾共沉淀以及嗜酸氧化亚铁硫杆菌较快的生长速度而导致合PO 3?4的化合物的溶解度急剧降低。在生物堆浸的初期,由于脉石的溶解,Mg2+浓度增大,随后缓慢降低。  相似文献   

14.
采用水热臭葱石沉砷法研究高砷含铁溶液沉砷过程中钠离子及其它宏观技术参数对沉砷渣物相组成、目标元素含量、形貌特征、砷铁沉淀率以及沉砷渣中黄钠铁矾、碱式硫酸铁、次水合砷酸铁(FeAsO_4·0.75H_2O)等亚稳态铁物相转变行为的影响规律。结果表明:体系中Na~+的存在对水热臭葱石沉砷过程的影响显著,初始Na~+浓度为5 g/L时,形成以臭葱石、次水合砷酸铁为主并伴有部分亚稳态黄钠铁矾生成的沉砷渣,随着初始Na~+浓度的升高,有利于黄钠铁矾的生成,渣中SO_4~(2-)震动吸收峰随之增强,臭葱石的形成逐步受到抑制;当Na~+浓度达到10 g/L时,沉砷渣物相以次水合砷酸铁和黄钠铁矾为主,此时As、Fe的沉淀率分别为98.2%、93.3%,沉砷渣中Na、S的含量分别高达1.7%、4.6%。适当降低初始pH、缩短反应时间、降低反应温度均可抑制亚稳态黄钠铁矾物相的形成,有利于获得纯度较高的臭葱石沉砷渣;同时,延长反应时间可实现次水合砷酸铁向臭葱石的转化。  相似文献   

15.
不锈钢电化学着黑色工艺与成膜机理研究   总被引:1,自引:0,他引:1  
采用电化学着色法对不锈钢着黑色进行了研究,讨论了钝化处理、着色液组成等因素对着色的影响,测定了着色膜的耐磨性和耐蚀性,并根据着色膜的组成、微观结构分析了成膜机理.结果表明:钝化和封闭处理能明显提高着色膜的耐磨性和抗色变性;电化学分析表明在1 mol/L H2SO4溶液、3.5%NaC l溶液和10%NaOH溶液中,着色膜腐蚀电位比不锈钢基体分别正移1130、565和790 mV,且腐蚀电流密度都比相应介质中的小;扫描电镜和能谱结果显示膜层为封闭块状结构,着色膜主要成分是Fe、Cr、Mn等元素,封闭处理能明显减少其裂纹数目.该成膜反应机理为:1)不锈钢基体的溶解形成大量的M e2+;2)金属/溶液界面上的M e2+与Cr3+水解形成合金氧化膜沉积在基体表面上;3)电化学致密过程中4H2MoO4+2SO42-+4H+2(MoO)2SO4+6H2O+6[O]和M e+[O]=M eO反应是着色膜致密的主要原因.  相似文献   

16.
赤泥酸浸的试验研究   总被引:6,自引:1,他引:5  
以HCl和H2SO4为浸出剂,对赤泥中各有价金属的浸出条件进行了较系统的试验研究。结果表明,先采取低浓度HCl浸出,残渣再用高浓度H2SO4分解的两段浸出方式为佳。一段浸取盐酸浓度为6mol/L.液固比L/S=4:1.反应温度50℃,反应时间1h。Sc2O3的浸出率大于80%,TiO2的浸出率为1%左右。二段浸取硫酸浓度为92%.酸渣比为3:1.熟化温度为200℃,熟化时间为1.5h。TiO2的浸出率为96.57%。  相似文献   

17.
难处理含金硫精矿的焙烧氧化-硫代硫酸盐浸出   总被引:1,自引:0,他引:1  
为了提高难处理含金硫精矿中金的浸出率,采用同步热分析仪研究在马弗炉中焙烧氧化难处理含金硫精矿的最佳条件,通过优化实验确定硫代硫酸盐浸出的最佳工艺参数。结果表明:在马弗炉中焙烧氧化难处理含金硫精矿最佳条件为在700℃温度下焙烧2 h,难处理含金硫精矿硫的去除率可达94.7%。焙烧后,金的浸出率大幅度提高。使用组成为0.03 mol/L CuSO4、1.0 mol/L NH3·H2O、0.3 mol/L Na2S2O3、0.1 mol/L(NH4)2SO4和0.3 mol/L Na2SO3的硫代硫酸盐溶液作为浸出剂,最佳浸出工艺参数如下:浸出时间18 h、液固比2:1、振荡速度250 r/min、浸出温度50℃。在此浸出工艺参数下,金浸出率达71.2%。  相似文献   

18.
除铁是锌湿法冶金过程的重要步骤。磷酸盐沉淀法相比于传统的铁矾、针铁矿和赤铁矿沉淀法具有明显的优势。针对磷酸盐沉淀法的从硫酸锌溶液中净化除铁过程进行热力学分析,绘制了298K时Men+-P-H_2O(Me:Zn(Ⅱ),Cu(Ⅱ),Fe(Ⅱ),Fe(Ⅲ),Ni(Ⅱ))系组浓度对数-pH图,利用热力学平衡图对磷酸盐沉淀法的从硫酸锌溶液中净化除铁和磷酸铁碱分解过程进行热力学分析。结果表明:pH值为0~5.0时磷酸盐形成由易至难依次为Fe(Ⅲ)Cu(Ⅱ)Fe(Ⅱ)Zn(Ⅱ)Ni(Ⅱ);整个pH值范围可以分为难溶磷酸盐稳定区、Me(OH)_n稳定区;高p H区磷酸盐中的Me转变为稳定的Me(OH)_n,实现磷酸盐碱分解。验证实验表明,加入1.0倍理论量的磷酸钠,控制沉淀pH值为2.0,铁、锌、铜、镍沉淀率分别为98.9%、3.5%、2.8%、0.7%;FePO_4与其2.0倍物质量的Na OH反应,产物为Fe(OH)_3、Na_2HPO_4,磷浸出率为96.8%,分解液pH为11.3,实验与理论相符。  相似文献   

19.
利用高温热处理炉、扫描电镜和X射线衍射仪等研究了镍基单晶合金在Na2SO4、NaCl以及75% Na2SO4+25%NaCl中的热腐蚀行为.结果表明:在700℃腐蚀10h时,镍基合金在75%Na2SO4+25%NaCl溶液中的热腐蚀最为严重,其次为Na2SO4,在NaCl中的热腐蚀程度最轻;合金在Na2SO4溶液中主要发生氧化-硫化反应,腐蚀产物主要由Al2O3、NiO、Cr2S3、Ni3S2、NiCr2O4和TiS组成;在NaCl溶液中的热腐蚀主要发生氧化反应,腐蚀产物主要由Na2CrO4、NiO和Al2O3组成;在75%Na2SO4+25%NaCl溶液中的热腐蚀以氧化-硫化为主,腐蚀产物主要为Al2O3、NiO、TiO2、CrO、CrS、Ni3S2以及少许CoCr2S4.  相似文献   

20.
研究热浸镀锌厂的锌灰,使之可以作为二次锌资源返回镀锌槽。这种废料中含有63%的锌,锌以金属、氧化物和羟基氯化物相存在。在各种浸出槽负荷(100~300 g/L)下于H_2SO_4溶液(20%,25%)中浸出锌灰,研究锌、锰、铁和氯离子的浸出行为。考察几种从浸出液中除铁的方法。添加絮凝剂对后续的铁沉淀物过滤有害,因为会导致溶液黏度增大;氧化锌与为了提高pH值而加入的碳酸钙结合,形成高密度的悬浊液,无法从硫酸锌溶液中分离出来。在不同的pH值(-0.5~2.8)下进行锌电积,电流密度范围为3~10 A/dm~2。从锌灰中回收纯金属的最佳条件如下:用20%的硫酸浸出,浸出槽负荷100~150 g/L,用H_2O_2和CaCO_3沉淀出Fe2O3·xH_2O,在pH 0.1~1.0、电流密度3~6 A/dm~2的条件下进行电积锌。还讨论电解液中pH与游离H_2SO_4浓度之间的关系。锌电解液的pH-酸浓度曲线介于纯H_2SO_4溶液的实验曲线与计算曲线之间;如果溶液中存在铁离子,则曲线向低pH方向移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号