首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upconversion emissions from rare‐earth nanoparticles have attracted much interest as potential biolabels, for which small particle size and high emission intensity are both desired. Herein we report a facile way to achieve NaYF4:Yb,Er@CaF2 nanoparticles (NPs) with a small size (10–13 nm) and highly enhanced (ca. 300 times) upconversion emission compared with the pristine NPs. The CaF2 shell protects the rare‐earth ions from leaking, when the nanoparticles are exposed to buffer solution, and ensures biological safety for the potential bioprobe applications. With the upconversion emission from NaYF4:Yb,Er@CaF2 NPs, HeLa cells were imaged with low background interference.  相似文献   

2.
Red‐shifted bioluminescent emitters allow improved in vivo tissue penetration and signal quantification, and have led to the development of beetle luciferin analogues that elicit red‐shifted bioluminescence with firefly luciferase (Fluc). However, unlike natural luciferin, none have been shown to emit different colors with different luciferases. We have synthesized and tested the first dual‐color, far‐red to near‐infrared (nIR) emitting analogue of beetle luciferin, which, akin to natural luciferin, exhibits pH dependent fluorescence spectra and emits bioluminescence of different colors with different engineered Fluc enzymes. Our analogue produces different far‐red to nIR emission maxima up to λmax=706 nm with different Fluc mutants. This emission is the most red‐shifted bioluminescence reported without using a resonance energy transfer acceptor. This improvement should allow tissues to be more effectively probed using multiparametric deep‐tissue bioluminescence imaging.  相似文献   

3.
4.
5.
6.
Oleic acid stabilized superparamagnetic iron oxide nanoparticles (SPION) were selected as the cores for fabrication of sub‐50‐nm monodisperse single‐loaded SPION@SiO2 core–shell nanostructures. Parameters that influence the formation of SPION@SiO2 in the water‐in‐oil reverse microemulsion system have been systematically investigated. The sufficiently high concentration of well‐dispersed SPION, together with an appropriately low injection rate of tetraethoxysilane, were found to be the keys to efficiently prevent the homogeneous nucleation of silica and obtain a high‐quality single‐loaded core–shell nanocomposite. A more detailed mechanism for incorporating oleic acid capped inorganic functional nanoparticles into silica is proposed on the basis of previous reports and our new experimental results. Finally, the as‐synthesized SPION@SiO2 nanospheres are exploited as an MRI‐enhanced contrast agent, and their contrast effect in solution is tested by using a clinical MRI instrument.  相似文献   

7.
8.
Novel β‐NaGdF4/Na(Gd,Yb)F4:Er/NaYF4:Yb/NaNdF4:Yb core/shell 1/shell 2/shell 3 (C/S1/S2/S3) multi‐shell nanocrystals (NCs) have been synthesized and used as probes for in vivo imaging. They can be excited by near‐infrared (800 nm) radiation and emit short‐wavelength infrared (SWIR, 1525 nm) radiation. Excitation at 800 nm falls into the “biological transparency window”, which features low absorption by water and low heat generation and is considered to be the ideal excitation wavelength with the least impact on biological tissues. After coating with phospholipids, the water‐soluble NCs showed good biocompatibility and low toxicity. With efficient SWIR emission at 1525 nm, the probe is detectable in tissues at depths of up to 18 mm with a low detection threshold concentration (5 nM for the stomach of nude mice and 100 nM for the stomach of SD rats). These results highlight the potential of the probe for the in vivo monitoring of areas that are otherwise difficult to analyze.  相似文献   

9.
We report herein the synthesis of a luminescent polynuclear dendritic structure (SmIII‐G3P‐2,3Nap) in which eight SmIII ions are sensitized by thirty‐two 2,3‐naphthalimide chromophores. Upon a single excitation wavelength, the dendrimer complex exhibits two types of emission in the visible and in the near‐infrared (NIR) ranges. SmIII‐G3P‐2,3Nap was non‐cytotoxic after 24 h of incubation and up to 2.5 μM . The ability of the SmIII‐based probe to be taken up by cells was confirmed by confocal microscopy. Epifluorescence microscopy validated SmIII‐G3P‐2,3Nap as a versatile probe, capable of performing interchangeably in the visible or NIR for live‐cell imaging. As both emissions are obtained from a single complex, the cytotoxicity and biodistribution are inherently the same. The possibility for discriminating the sharp SmIII signals from autofluorescence in two spectral ranges increases the reliability of analysis and reduces the probability of artifacts and instrumental errors.  相似文献   

10.
A near‐infrared (NIR) induced decomposable polymer nanocapsule is demonstrated. The nanocapsules are fabricated based on layer‐by‐layer co‐assembly of azobenzene functionalized polymers and up/downconversion nanoparticles (U/DCNPs). When the nanocapsules are exposed to 980 nm light, ultraviolet/visible photons emitted by the U/DCNPs can trigger the photoisomerization of azobenzene groups in the framework. The nanocapsules could decompose from large‐sized nanocapsule to small U/DCNPs. Owing to their optimized original size (ca. 180 nm), the nanocapsules can effectively avoid biological barriers, provide a long blood circulation (ca. 5 h, half‐life time) and achieve four‐fold tumor accumulation. It can fast eliminate from tumor within one hour and release the loaded drugs for chemotherapy after NIR‐induced dissociation from initial 180 nm capsules to small 20 nm U/DCNPs.  相似文献   

11.
12.
13.
After coating 20 Yb/2 Er:NaGdF4 core nanocrystals with a NaYbF4 shell, upconversion emission of the rare earth ions weakens. So far, the exact reason for this phenomenon is still unclear due to lack of the direct evidence. In this report, a core@shell@shell sandwich‐like structure is designed and fabricated to investigate this phenomenon. We find that high Yb3+ concentration in the shell has mainly two adverse impacts: it promotes not only the deleterious back energy transfer from Er3+ in the core to Yb3+ in the shell but also the energy transfer from Yb3+ in the core to Yb3+ in the shell. To obtain nanocrystals with high upconversion efficency, appropriate Yb3+ concentration should be introduced into the shell or the transition layer.  相似文献   

14.
Hierarchical Fe3O4@SiO2@P(4VP‐DVB)@Au nanostructures were prepared in which the slightly cross‐linked, thin poly(4‐vinylpyridine‐co‐divinylbenzene) (P(4VP‐DVB)) shells were constructed onto Fe3O4@SiO2 nanospheres, followed by in situ embedding of gold nanocrystals homogeneously into the P4VP chains. These slightly cross‐linked chains, easily swollen by the reactants, make the gold nanocrystals accessible to the reactants, and the thin shell (about 15 nm) reduces the diffusion distance of the reactants to the active gold nanocrystals (about 5 nm), thereby enhancing their catalytic activity and utility. At the same time, confinement of gold nanocrystals within the P4VP shells prevents their migration and coagulation during catalytic transformations. Hence the nanocomposites exhibit high activity (up to 4369.5 h?1 of turnover frequency (TOF)) and controllable magnetic recyclability without any significant loss of gold species after ten runs of catalysis in the reduction of 4‐nitrophenol.  相似文献   

15.
The luminescent properties of a family of lanthanide metal–organic frameworks LnL ( Ln =Y, La–Yb, except Pm; L =4,4′‐({2‐[(4‐carboxyphenoxy)methyl]‐2‐methylpropane‐1,3‐diyl}bis{oxy})dibenzoic acid) have been explored, and the energy‐transfer process in the compounds has been carefully analyzed. The visible‐emitting Tb0.08Gd0.92L and the near‐infrared (NIR)‐luminescent Yb0.10Gd0.90L show excellent optical performances and can be considered as fluorescent probes for acetone sensing based on luminescence quenching effects arising from host–guest interactions. Moreover, GdL exhibits a strong second harmonic generation (SHG) signal 6.1 times that of potassium dihydrogen phosphate (KDP) and an outstanding phase‐matchable effect. These lanthanide compounds combining fluorescent and nonlinear optical (NLO) properties could meet further requirements as multifunctional materials.  相似文献   

16.
Ultra‐small ZnGa2O4:Cr3+ nanoparticles (6 nm) that exhibit near‐infrared (NIR) persistent luminescence properties are synthesized by using a non‐aqueous sol–gel method assisted by microwave irradiation. The nanoparticles are pegylated, leading to highly stable dispersions under physiological conditions. Preliminary in vivo studies show the high potential for these ultra‐small ZnGa2O4:Cr3+ nanoparticles to be used as in vivo optical nanotools as they emit without the need for in situ excitation and, thus, avoid the autofluorescence of tissues.  相似文献   

17.
Hydrogen produced from water under solar energy is an ideal clean energy source, and the efficiency of hydrogen production usually depends on the catalytic systems based on new compounds and/or a unique nanostructure. Herein, well‐defined cube‐in‐cube hollow Cu9S5 nanostructures have been successfully prepared with Cu2O nanocubes and CS2 as precursors, and single‐shell hollow Cu9S5 nanocubes could be obtained by replacing CS2 with Na2S. The formation mechanism of cube‐in‐cube hollow nanostructures has been proposed based on the Kirkendell effect and an outward self‐assembly process. Further studies revealed that the cube‐in‐cube hollow Cu9S5 nanostructures exhibited better photocatalytic activity toward solar H2 evolution and would be a promising photocatalyst in the solar hydrogen industry.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号