首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
以聚二甲基硅氧烷(PDMS)为原料,甲苯为溶剂,甲基三乙氧基硅烷为交联剂,二丁基二月桂酸锡为催化剂,制得PDMS渗透蒸发膜,以分离因子、渗透通量作为膜分离性能的主要评价指标,研究了交联剂用量及操作条件对膜性能的影响.结果表明,交联剂用量增加,膜对苯酚的选择性增加,渗透通量先上升后下降;料液温度升高,膜的选择性降低,而渗透通量增加;料液浓度增加,膜的选择系数和渗透通量均增加;料液流速加快,膜的渗透通量和选择系数均增加;下游侧压力升高,渗透通量减小,而选择系数增加.在料液温度为60℃、质量浓度为0.5 g·L~(-1)、体积流量为0.6L·min~(-1),下游侧压力为6kPa时,膜的渗透通量为98mg·m~(-2)·h~(-1),膜对苯酚的选择系数为5.12.  相似文献   

2.
将碳纳米管(CNTs)填充到PDMS中制备出CNTs/PDMS杂化膜,并将其用于乙醇/水体系的分离,发现由多壁碳纳米管制备的膜分离性能优于单壁碳纳米管填充膜,在40℃下,进料乙醇浓度为5%(质量分数)时,膜的分离因子可由8.3提高到10.0,渗透通量为206.2 g·(m2·h)-1;采用十二烷基三氯硅烷对多壁碳纳米管进行修饰,并对修饰前后碳纳米管的性能进行表征,研究表明修饰后碳纳米管表面形成疏水层,碳纳米管的疏水性增强;将修饰后的碳纳米管填充到PDMS中,可进一步提高杂化膜对乙醇的选择性,膜的分离因子可提高到11.3,渗透通量为130.9 g·(m2·h)-1。  相似文献   

3.
4.
疏水SiO2填充PDMS膜分离水中乙酸正丁酯的性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以聚偏氟乙烯(PVDF)为支撑层,选用疏水性纳米SiO2粉体作为改性剂,制备出聚二甲基硅氧烷(PDMS)复合膜材料,并用于乙酸正丁酯/水溶液的渗透汽化分离。采用SEM、FTIR、XRD、拉伸实验、接触角及正电子湮没寿命谱测定等对膜材料物理化学性能进行了表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,SiO2在PDMS膜中分散均匀,且没有发生化学作用,并提高了膜材料的机械强度和疏水性。随着SiO2添加量增加,膜在乙酸正丁酯溶液中的溶胀度先升后降,渗透通量呈下降趋势,而分离因子先增大后减小。当SiO2添加量为4%(质量)时,随进料浓度的增加,渗透通量增大,分离因子先增大后减小;随着温度升高,渗透通量增大,分离因子减小;渗透通量和分离因子最大值分别为240 g·m-2·h-1和542。  相似文献   

5.
含酚废水对环境有较大危害,近年来发展较快的渗透蒸发技术对含酚废水的处理较有潜力。论文综述了聚二甲基硅氧烷(PDMS)、聚氨酯(PU)和聚醚嵌段聚酰胺(PEBA)三类聚合物膜及其改性膜在渗透蒸发分离含酚废水方面的进展,并进行了比较,展望了含酚废水渗透蒸发分离的未来发展方向。  相似文献   

6.
将β-环糊精(β-CD)添加到聚醚共聚乙酰胺(PEBA)中制备β-环糊精/聚醚共聚乙酰胺填充膜(β-CD-f-PEBA),用于苯酚-水的渗透汽化分离研究。SEM、FTIR表明β-环糊精在膜中分散均匀且与膜结合紧密,与膜间只有氢键相互作用而未发生化学交联。拉伸实验表明膜的拉伸强度和断裂强度均随着β-CD添加量的增加先减小后增大。采用基团贡献法计算了PEBA、苯酚及水的溶解度参数,证明PEBA膜对苯酚具有较高的选择吸附性。通过溶胀验证膜对苯酚的选择吸附性能,膜对苯酚的吸附量度随着料液中苯酚浓度和膜中β-CD添加量的增加而增加。考察了PEBA和β-CD-f-PEBA膜的渗透汽化性能,当β-CD填充量为0.5%(质量)时,分离效果最佳,渗透通量和分离因子分别为3062.9 g·m-2·h-1和43.3。通过Arrhenius方程计算苯酚和水的渗透活化能分别为97.19和52.12 kJ·mol-1。重复实验表明β-CD-f-PEBA膜的操作稳定性良好。  相似文献   

7.
8.
甲醛—水渗透蒸发膜分离   总被引:1,自引:0,他引:1  
  相似文献   

9.
张静 《净水技术》2022,(1):14-22
渗透汽化(PV)膜分离技术是一种新型膜分离技术,适用于分离恒沸点混合物、近沸点溶液、热敏感性混合物、有机-有机混合物以及水溶液中少量有机物。PV分离水溶液中有机物的工业应用还处于初步阶段,文中从硅橡胶渗透汽化优先透有机物膜的制备条件、工艺应用参数及膜寿命等方面进行综述。膜生产放大和膜寿命是影响该技术推广的重要因素,可以从膜制备和应用工艺方面进行改进。  相似文献   

10.
渗透蒸发法膜分离技术及其应用   总被引:3,自引:0,他引:3  
随着生产的不断发展,对分离技术的要求越来越高,分离的难度越来越大。为了适应这些要求,新的分离方法不断地涌现,膜分离技术即是其中之一。膜分离是指分子混合状态的气体或液体,经过特定的膜的渗透作用,改变其分子混合物的组成,直至能使某一种分子从其他混合物中分离出来,实现混合物分离的目的。一般膜分离没有相的变化,它是利用物质透过膜的速度差而实现的,是一种理想的、节能的分离方法。高分离效率的膜分离技术,由于分离所需能量少,工艺可连续化,装置比较紧凑,并且又能以低浓度存在的物质,分子结构类似的物质,分子间作用…  相似文献   

11.
Hydroxy‐terminated polybutadiene‐based porous and nonporous polyurethaneurea membranes were prepared and used to study the phenol separation efficiency from dilute aqueous solution. The porosity was developed by incorporation of lithium chloride in polymer matrix with subsequent leaching of the same in hot water. The porous membrane showed higher phenol flux over that of nonporous membrane. Permeate containing about 97 wt % phenol was obtained from feed containing 7 wt % phenol, when pervaporation was carried out with porous polyurethaneurea membrane at 75°C. The activation energies for diffusion, permeation, and pervaporation were calculated from Arrhenius plots. From the activation energy values, it was observed that the pervaporation process became easier with increased phenol concentration in the feed and porosity of the membrane used. The membrane boundary resistance was observed to decrease with increase in temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1857–1865, 2006  相似文献   

12.
The separation of a phenol-water mixture using a polyurethane membrane by a pervaporation method was investigated. Polyurethane was selected as a membrane material because its affinity for phenol was considered to be high. Polyurethane was prepared by the polyaddition of 1,6-diisocyanatohexane and polytetramethyleneglycol. The polyurethane layer was sandwiched with a porous polypropylene membrane (Celgard® 2500). Pervaporation measurement was carried out under vacuum on the permeate side, and the permeate vapor was collected with a liquid nitrogen trap. The phenol concentration in the permeate solution increased from 0 to 65 wt % with increasing feed concentration of phenol from 0 to 7 wt %. The total flux also increased up to 930 g m-2 h-1 with increasing phenol partial flux. In the sorption measurement at 60°C, the concentration of phenol in the membrane was 68 wt %, which was higher than that of the permeate solution. Therefore, it was considered that the phenol selectivity was based on high solubility in the polyurethane membranes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:469–479, 1997  相似文献   

13.
唐郡  陈德强  张春芳  白云翔  顾瑾  孙余凭 《化工进展》2015,34(10):3700-3705
基于乳液成膜技术,以硅溶胶为填充剂,制备了硅溶胶聚二甲基硅氧烷/PDMS杂化膜,用于分离水中正丁醇。对膜进行了FI-IR分析及形貌、热稳定性、接触角和力学性能表征;研究了硅溶胶的加入对膜渗透汽化性能的影响。结果表明,硅溶胶与PDMS基质结合良好,没有明显相界面,膜的渗透汽化性能明显提高。在料液质量分数为1%、操作温度为40℃时,随着膜中硅溶胶含量的增加,膜的分离选择性和对丁醇的渗透性均呈现先升高后下降的趋势;在硅溶胶含量为3.75%时,分离选择性高达9.03;在硅溶胶含量为7.5%时,膜对丁醇的渗透性高达2.9×106Barrer。  相似文献   

14.
Crosslinked polydimethylsiloxane/polyetherimide (PDMS/PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat‐plate composite membrane. The different function composition of the PDMS/PEI composite membranes were characterized by reflection Fourier transform infrared (FTIR) spectroscopy. The surface and section of PDMS/PEI composite membranes were investigated by scanning electron microscope (SEM). The composite membranes prepared in this work were employed in pervaporation separation of benzene/cyclohexane mixtures. Effects of feed temperature, feed composition, concentration of crosslinking agent on the separation efficiency of benzene/cyclohexane mixtures were investigated experimentally. In addition, the swelling rate and stableness of composite membrane during long time operation were studied, which should be significant for practical application. The results demonstrated that the pervaporation method could be very effective for separation of the benzene/cyclohexane mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
为探究出适合分离水中的乙酸正丁酯和乙酸乙酯的新型渗透汽化膜材料,选用沸石ZSM-5 对聚二甲基硅氧烷(PDMS)材料进行填充改性,以聚偏氟乙烯(PVDF)为支撑层,采用刮涂法制备PDMS/ZSM-5/PVDF复合膜渗透汽化分离水中的乙酸正丁酯和乙酸乙酯。采用SEM、接触角测量仪、FTIR、TGA和XRD等对膜材料物理化学性能进行表征,考察了膜材料的溶胀行为及渗透汽化性能。结果表明,ZSM-5在 PDMS 膜中分散均匀,且没有发生化学作用,并提高了膜材料的疏水性和热稳定性。随着ZSM-5添加量的增加,膜在乙酸正丁酯和乙酸乙酯的溶胀度和待分离组分在膜材料中的扩散速率不断增加。随着进料浓度和温度的增加,渗透通量不断增大,分离因子先增大后减小。随着ZSM-5在PDMS/ZSM-5/PVDF复合膜中含量的增加,总渗透通量增加,而分离因子呈现先增加后减小的趋势。当添加量为10%(质量)时,分离因子达到最大值。对于乙酸正丁酯/水体系,渗透通量和分离因子最大值分别为319 g·m -2·h -1和131;而对于乙酸乙酯/水体系,渗透通量和分离因子最大值分别为1385 g·m -2·h -1和121。  相似文献   

16.
填充法改性PDMS膜及其对乙酸/水的渗透汽化分离性能   总被引:2,自引:1,他引:1  
用CTAB-蒙脱石填充改性PDMS膜,运用XRD, SEM等手段表征了不同填充量的复合膜结构,证明有机柱撑蒙脱石与聚合物形成插层型复合物后,膜的热稳定性明显改善. 研究了填充膜对乙酸/水体系的渗透汽化分离性能,结果表明,随着温度的升高,渗透通量增大而分离因子降低,通量随填充量增加单调上升,分离因子随填充量增加先增大后降低,填充量为7.4(%, w)时达到最大值. 从膜的结构及其与组分的相互作用对填充膜中蒙脱石可能存在的渗透通道作用进行了探讨.  相似文献   

17.
制备了聚四氟乙烯(PTFE)超细粉体填充聚二甲基硅氧烷(PDMS)复合膜,通过扫描电子显微镜、傅里叶变换红外光谱仪、热失重分析仪等测试仪器对复合膜进行了表征,利用低浓度有机物(乙醇、丙酮、正丙醇)水溶液体系进行渗透汽化,并由单组分溶解实验计算了有机物(乙醇、丙酮、正丙醇)在复合膜中的溶解度。结果表明,PTFE含量由0增加至10 %(质量分数,下同)时, 复合膜的表面积及热稳定性得到了提高,有机物乙醇、丙酮、正丙醇在复合膜中的溶解度分别由0.0923、0.1589和0.2691 g/g提高至0.0991、0.1678和0.2773 g/g;加入PTFE后提高了复合膜的渗透汽化性能。  相似文献   

18.
Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane(PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution.The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction.Their structural morphology and thermal stability were also examined.The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25 C,suggesting that the membranes have stronger sorption capacity in acetaldehyde solution.The effects of ZSM-5 filling content and acetaldehyde concentration on pervaporation performance of composite membranes were investigated.The permeation experiments at different temperatures showed that both selectivity and permeation flux of composite membranes increased with temperature.With 5%ZSM-5-PDMS/Nylon membrane at acetaldehyde mass concentration of 8% and 25℃,the separation factor of acetaldehyde/water achieved 35 and the permeation flux was 233.3 g·m-2·h-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号