首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
以LiOH.H2O、Ni(OH)2和Mn3O4为原料,采用固相法合成锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的倍率性能和高低温性能。结果表明:900℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Ni0.2Mn0.6]O2材料,并具有良好的电化学性能,放电容量最高可达235.9 mA.h/g;在50℃下测试时该材料的放电容量高达284.4 mA.h/g,并表现出良好的循环性能,其倍率性能和低温性能还有待进一步改善。  相似文献   

2.
采用草酸盐共沉淀法合成了层状LixNi0.5Mn0.5O2(x=1.00,1.05,1.10,1.15)正极材料,并研究了配锂量x为1.0,1.05,1.0和1.15时对终产物的结构及电化学性能的影响。采用X射线衍射(XRD)表征LixNi0.5Mn0.5O2材料的结构,使用充放电实验、EIS及CV研究了LixNi0.5Mn0.5O2的电化学性能。结果表明,x为1.10时材料具有良好的层状特征,且材料中锂/镍的混排程度最小。x为1.10时材料内阻小,有更好的循环稳定性和可逆性。在测试温度55℃和电压2.0~4.5V范围内,材料的首次放电比容量达到了239.6mAh/g,在循环20周后,容量保持率为98.2%。  相似文献   

3.
采用固相法合成了Li2Mn1-xMgxSiO4掺杂型正极材料,并用TG-DTA、XRD、SEM和电化学性能测试对材料进行了表征。前驱体的TG-DTA曲线和XRD物相分析表明,合成Li2MnSiO4时优化的煅烧温度为750℃。XRD测试表明Li2Mn1-xMgxSiO4具有正交结构,对应Pmn21空间群,掺镁可以提高样品主相的结晶度。掺Mg对微观形貌影响明显,适量掺杂可以得到粒径均匀、少团聚的亚微米级粉体。将Li2Mn1-xMgxSiO4组装成扣式电池进行电化学测试的结果表明,Li2Mn0.98Mg0.02SiO4样品性能最好,首次放电比容量达到124.6mAh/g,为理论容量的38%,循环20次后放电容量仍有60mAh/g。  相似文献   

4.
以化学共沉淀法制备的球形Ni0.25Mn0.75CO3为前驱体合成高电压正极材料LiNi0.5Mn1.5O4,探讨用前驱体与Li2CO3直接反应和用前驱体分解后的氧化物与Li2CO3反应两种工艺路线对LiNi0.5Mn1.5O4形貌和电化学性能的影响。用扫描电镜(SEM)和X射线衍射(XRD)对Ni0.25Mn0.75CO3前驱体和LiNi0.5Mn1.5O4样品进行表征,用充放电测试和循环伏安法对LiNi0.5Mn1.5O4样品进行电化学性能研究。结果表明:两种方法合成的LiNi0.5Mn1.5O4均具有尖晶石型结构。但以前驱体Ni0.25Mn0.75CO3直接与Li2CO3反应合成的LiNi0.5Mn1.5O4的一次粒子颗粒较大,形貌较差,性能也较差;而以前驱体分解后的氧化物与Li2CO3反应合成的LiNi0.5Mn1.5O4的形貌及性能均较好。在3.0~4.9 V的电压范围内,1C倍率下电池的放电比容量达到136.3 mA.h/g,循环100次仍有126.5 mA.h/g,且材料具有较好的倍率性能;5C倍率下的首次放电比容量高达120.7 mA.h/g。  相似文献   

5.
以FePO4为铁源、Li2CO3为锂源、聚丙烯为还原剂和碳源,采用一步固相法合成原位碳包覆磷酸亚铁锂(LiFePO4/C)复合材料,研究合成温度对材料LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜和拉曼光谱技术对合成产物的晶体结构、表面形貌和碳结构进行表征,通过电化学阻抗谱(EIS)和充放电测试对材料的电化学性能进行测试和分析。结果表明:在600~750℃温度范围内都可合成纯LiFePO4/C复合材料,随着合成温度的升高,材料颗粒尺寸和石墨化程度都将增大;600℃保温8h合成的材料颗粒尺寸为100~500nm,其1C放电比容量达到144.2mA·h/g,5C放电比容量达到119mA·h/g。  相似文献   

6.
5V尖晶石型LiNi0.5Mn1.5O4以其高能量密度、价格低廉、无环境污染等特点而被视为最具发展潜力的锂离子电池正极材料之一。分别采用蔗糖、葡萄糖两种不同碳源,通过液相混合、掺铬、高温煅烧制备出镍铬锰酸锂。对样品的结构、形貌、粒度、粒度分布及电性能等用XRD、SEM、粒度测量和电池充放电性能测试进行了分析。结果表明,加葡萄糖可制得粒子更细、粒度分布更窄的亚微米级的尖晶石型LiCr0.2Ni0.4Mn1.4O4,且具有更好的电化学性能,在3.4~5.2V范围、1C放电比容量可达143mAh/g,循环100次后容量保持率为99.3%。  相似文献   

7.
采用液相共沉淀法和固相烧结法分别制备镍钴锰复合氢氧化物(Ni0.5Co0.2Mn0.3(OH)2)和LiNi0.5Co0.2Mn0.3O2正极材料。通过X射线衍射和电化学性能测试对所得样品的结构及电化学性能进行了表征。结果表明:LiNi0.5Co0.2Mn0.3O2具有很好的α-NaFeO2层状结构,以20 mA/g的电流密度在2.5~4.3 V的电压区间充放电时,最高首次放电比容量达175 mA.h/g,首次库伦效率在89%~90%之间。当首次放电比容量为160~170 mA.h/g时,30循环未见容量衰减。锂含量对其电化学性能影响的结果表明:锂含量(n(Li)/n(Ni+Co+Mn))在1.03~1.09的范围内,随着锂含量的增加,放电比容量略有减小,但循环性能、中值电压以及平台性能都得到提高;当锂含量超过1.09时,循环性能、中值电压以及平台性能开始降低。  相似文献   

8.
采用以柠檬酸为络合剂的溶胶-凝胶法,制备具有尖晶石结构的Li1.03CexMn1.97-xO4(x=0.01,0.02,0.03)系列化合物。材料的晶体结构通过X射线衍射光谱(XRD)法进行表征,而其电化学性能通过循环伏安法(CV)和恒流充放电进行表征。XRD结果表明,合成的锂锰氧化物具有典型的尖晶石结构,但随着掺杂量的增加,CeO2杂质相逐渐出现。通过循环伏安法进行测试,其氧化峰与还原峰峰型明显。分别采用1/3C和1C倍率对正极材料进行恒流充放电测试,结果发现,Li1.03Ce0.02Mn1.95O4具有良好的循环性能,因而适量Ce元素的掺杂可以有效的改善尖晶石型锰酸锂的循环性能。  相似文献   

9.
采用真空固相法成功地合成了锂离子电池正极材料Li2Fe1-xMnxSiO4,并用FTIR、XRD和电化学性能测试对材料进行了表征.FTIR和XRD测试表明,Mn很好地崮溶到Li2FeSiO4中.电化学性能测试表明,当w≌w(Mn)=0.1%时,合成的Li2Fe1-xMnxSiO4电化学性能最佳,首次放电容量达到67.7 mAh/g,20次循环后容量仍保持在44.8 mAh/g.  相似文献   

10.
以钛白工业副产物七水硫酸亚铁为铁源,用液相沉淀制得无定形FePO4·xH2O前躯体,然后在多元醇中与锂源反应制得LiFePO4材料,过程在常压下进行,无需煅烧与惰性气体保护。用XRD、SEM及电化学分析考察多元醇乙二醇(EG)、二甘醇(DEG)和三甘醇(TEG)对材料物相和形貌的影响。结果表明:三甘醇所得样品的锂离子扩散速率最小;此样品的晶粒尺寸最小,结晶最完整,无明显杂相生成。在室温下放电倍率为0.1C、1C和5C时,该正极材料的首次放电比容量分别达到148.8、129.3和102.8 mA·h/g,其碳包覆样品的首次放电比容量分别达到155.6、139.9和112.2 mA·h/g,且循环性能良好。  相似文献   

11.
Spinel compound LiNi0.4Mn1.5Cr0.1O4 (LNMCO) and Li4Ti5O12 (LTO) were synthesized by the sol-gel method and the solid-state method, respectively. The particle sizes of the products LiNi0.4Mn1.5Cr0.1O4 and Li4Ti5O12 were 0.5 to 2 um and 0.5 to 0.8 um, respectively. All samples exhibited excellent electrochemical properties. A LiNi0.4Mn1.5Cr0.1O4/Li4Ti5O12 (LNMCO/LTO) cell was fabricated and was demonstrated to exhibit good electrochemical properties at the high current rate of 1 C. When the specific capacity was determined based on the mass of the LNMCO cathode, the LNMCO/LTO cell delivered 125 mAh g−1 at 1 C and 77 mAh g−1 at 5 C. The capacity retentions after 30 cycles were 94.4 % and 83.1 %, respectively.  相似文献   

12.
13.
以Al(NO3)3?9H2O为包覆原料,通过燃烧法制备得到LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料。通过X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和透射电镜(TEM)等表征手段对材料的结构和形貌进行分析,并通过恒电流充放电、循环伏安(CV)、交流阻抗(EIS)等测试分析材料的电化学性能。结果表明,Al2O3包覆没有改变LiNi0.03Co0.05Mn1.92O4的尖晶石型结构,包覆层厚度约10.6nm。LiNi0.03Co0.05Mn1.92O4@Al2O3正极材料电化学性能得到了明显改善,1 C和10 C倍率下初始放电比容量分别为119.9 mAh?g-1和106.3 mAh?g-1,充放电循环500次后容量保持率分别为88.4%和78.2%,而未包覆的LiNi0.03Co0.05Mn1.92O4在1 C和10 C倍率下初始放电比容量分别为121.2 mAh?g-1和104.0 mAh?g-1,500次循环后容量保持率分别为84.1%和67.6%。LiNi0.03Co0.05Mn1.92O4@Al2O3活化能为32.92 kJ?mol-1,而未包覆材料的活化能为36.24 kJ?mol-1,包覆有效降低了材料Li+扩散所需克服的能垒,提高了材料的电化学性能。  相似文献   

14.
以SnCl4.5H2O、TiCl4、ZnCl2和N2H4.H2O为原料,采用水热法制备Zn2Sn0.8Ti0.2O4纳米粉体。在此基础上,以葡萄糖和水热合成的Zn2Sn0.8Ti0.2O4为原料,以碳热还原法制备Zn2Sn0.8Ti0.2O4/C复合材料。利用XRD、XPS、TEM、恒电流充放电等方法分别研究Zn2SnO4和Zn2Sn0.8Ti0.2O4/C复合材料的结构、形貌和电化学性能。同时用非原位XRD、XPS和SEM分析Zn2Sn0.8Ti0.2O4/C复合材料电极在充放电过程中的结构和形貌变化。合成的纯Zn2SnO4的首次放电容量为1670.8mA.h/g,循环40次后放电容量迅速衰减为342.7mA.h/g。而Zn2Sn0.8Ti0.2O4/C复合材料的首次放电容量为1530.0mA.h/g,循环100次后容量还保持为479.1mA.h/g,与纯Zn2SnO4、Zn2Sn0.8Ti0.2O4和Zn2SnO4/C相比,电化学性能有较大的提高。  相似文献   

15.
The spinel compound Li4Ti5O12 was synthesized by a solid state method. In this synthesizing process, anatase TiO2 and Li2CO3 were used as reactants. The influences of reaction temperature and calcination time on the properties of products were studied. When calcination temperature was 750 °C and calcination temperature was 24 h, the products exhibited good electrochemical properties. Its discharge capacity reached 160 mAh g−1 and its capacity retention was 97% at the 50th cycle when the current rate was 1 C. When current rate increased to 10 C, its first discharge capacity could reach 136 mAh g−1, and its capacity retention was 85% at the 50th cycle.  相似文献   

16.
采用具有高效传质和微观混合性能的定-转子反应器制备了LiFe1-xMnxPO4 (x=0.0, 0.1, 0.2, 0.3)和LiFe1-xNixPO4 (x=0.00, 0.03, 0.05, 0.07)粉体,分别用作正极材料制成电池后,采用电池测试系统测定了电池的电化学性能随温度的变化规律。结果表明,粉体颗粒呈类球形,尺寸分布均匀,粒径范围为5~10 μm,Mn和Ni的掺杂没有改变粉体的晶体结构。以LiFe0.8Mn0.2PO4和LiFe0.95Ni0.05PO4两种组成的粉体性能最好,在倍率0.1 C下,所得电池的首次充放电比容量在室温和50 oC时,分别为153.2和155.7 mAh/g,及156.4和160.4 mAh/g;100次充放电循环后电池的容量保持率分别为95.4和96.5%,及93.8和95.0%。借助具有过程强化作用的定-转子反应器制备的Mn和Ni掺杂LiFePO4正极材料的电性能得到显著提高。原因是定-转子反应器一方面可以制备颗粒尺寸均匀的粉体,另一方面又可使掺杂的Mn和Ni在粉体颗粒中均匀分布,两者同时提高了电池中Li+的扩散速率,进而提高了锂离子电池的电化学性能和高温电性能。  相似文献   

17.
采用感应熔炼和热处理的方法制备La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75?xFex(x=0~0.20)合金,并研究合金的相结构和电化学储氢性能。全部合金均为单一的具有CaCu5结构的LaNi5相,LaNi5相的晶格常数a和晶胞体积随着x值的增加而增大。最大放电容量随着x值的增加从319.0mA·h/g(x=0)降低到291.9mA·h/g(x=0.20)。在1200mA/g的电流密度下HRD值从53.1%(x=0)降低到44.2%(x=0.20)。合金电极的循环稳定性随着x值的增加而增强,这主要归因于合金抗粉化能力的增强。  相似文献   

18.
以FeSO4·7H2O、H3PO4、H2O2和尿素为原料,采用均匀沉淀法制备LiFePO4的前驱体FePO4·xH2O,研究表面活性剂PEG对前驱体FePO4·xH2O形貌的影响。并将获得的FePO4·xH2O与Li2CO3及葡萄糖混合后合成LiFePO4/C。利用XRD、SEM、循环伏安测试、电化学性能测试、交流阻抗测试等手段对LiFePO4/C进行表征。结果表明:当不添加表面活性剂PEG时,FePO4·xH2O颗粒呈球形,但团聚现象严重;添加PEG后,颗粒较分散,形貌为多面体,合成的LiFePO4/C在0.1C时的首次放电比容量为151.0 mA·h/g,倍率性能好,振实密度达1.44 g/cm3。  相似文献   

19.
Two spinel LiNi0.5Mn1.2Ti0.3O4 samples were successfully synthesized by the sol-gel method using chemicals LiAc·2H2O, Mn(Ac)2·2H2O, Ni(Ac)2·4H2O and Ti(OCH3)4 as reactants. When reactants are calcined in air, a sample of LiNi0.5Mn1.2Ti0.3O4 (1), which contains Mn3+ and Mn4+ ions, is obtained. The sample of LiNi0.5 Mn1.2Ti0.3O4 (2), which contains only Mn4+ ions, is obtained when reactants are calcined in an oxygen atmosphere. X-ray diffraction (XRD), scanning electron microscopy (SEM), galvanostatic charge-discharge test and cyclic voltammogram test were employed to investigate the two samples. XRD results show that there is a small shift towards a larger diffraction angle for peaks of the LiNi0.5Mn1.2Ti0.3O4 (2) sample. SEM indicates that the two samples exhibit polyhedral shapes. The cyclic voltammogram test demonstrates that reduction-oxidation reactions take place at different voltages for the two samples. The prepared sample of LiNi0.5Mn1.2Ti0.3O4 with Mn3+ ions exhibits excellent cycle performance at different current rates. Its discharge capacity is 133.9 mAh/g at 0.1C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号