首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Important findings on the consequences of climate change for agriculture and forestry from the recently completed Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) are reviewed, with emphasis on new knowledge that emerged since the Second Assessment Report (SAR). The State-Pressure-Response-Adaptation model is used to organize the review. The major findings are:
  • Constant or declining food prices are expected for at least the next 25 yr, although food security problems will persist in many developing countries as those countries deal with population increases, political crisis, poor resource endowments, and steady environmental degradation. Most economic model projections suggest that low relative food prices will extend beyond the next 25 yr, although our confidence in these projections erodes farther out into the 21st century.
  • Although deforestation rates may have decreased since the early 1990s, degradation with a loss of forest productivity and biomass has occurred at large spatial scales as a result of fragmentation, non-sustainable practices and infrastructure development.
  • According to United Nations estimates, approximately 23% of all forest and agricultural lands were classified as degraded over the period since World War II.
  • At a worldwide scale, global change pressures (climate change, land-use practices and changes in atmospheric chemistry) are increasingly affecting the supply of goods and services from forests.
  • The most realistic experiments to date – free air experiments in an irrigated environment – indicate that C3 agricultural crops in particular respond favorably to gradually increasing atmospheric CO2 concentrations (e.g., wheat yield increases by an average of 28%), although extrapolation of experimental results to real world production where several factors (e.g., nutrients, temperature, precipitation, and others) are likely to be limiting at one time or another remains problematic. Moreover, little is known of crop response to elevated CO2 in the tropics, as most of the research has been conducted in the mid-latitudes.
  • Research suggests that for some crops, for example rice, CO2 benefits may decline quickly as temperatures warm beyond optimum photosynthetic levels. However, crop plant growth may benefit relatively more from CO2 enrichment in drought conditions than in wet conditions.
  • The unambiguous separation of the relative influences of elevated ambient CO2 levels, climate change responses, and direct human influences (such as present and historical land-use change) on trees at the global and regional scales is still problematic. In some regions such as the temperate and boreal forests, climate change impacts, direct human interventions (including nitrogen-bearing pollution), and the legacy of past human activities (land-use change) appear to be more significant than CO2 fertilization effects. This subject is, however an area of continuing scientific debate, although there does appear to be consensus that any CO2 fertilization effect will saturate (disappear) in the coming century.
  • Modeling studies suggest that any warming above current temperatures will diminish crop yields in the tropics while up to 2–3 °C of warming in the mid-latitudes may be tolerated by crops, especially if accompanied by increasing precipitation. The preponderance of developing countries lies in or near the tropics; this finding does not bode well for food production in those countries.
  • Where direct human pressures do not mask them, there is increasing evidence of the impacts of climate change on forests associated with changes in natural disturbance regimes, growing season length, and local climatic extremes.
  • Recent advances in modeling of vegetation response suggest that transient effects associated with dynamically responding ecosystems to climate change will increasingly dominate over the next century and that during these changes the global forest resource is likely to be adversely affected.
  • The ability of livestock producers to adapt their herds to the physiological stress of climate change appears encouraging due to a variety of techniques for dealing with climate stress, but this issue is not well constrained, in part because of the general lack of experimentation and simulations of livestock adaptation to climate change.
  • Crop and livestock farmers who have sufficient access to capital and technologies should be able to adapt their farming systems to climate change. Substantial changes in their mix of crops and livestock production may be necessary, however, as considerable costs could be involved in this process because investments in learning and gaining experience with different crops or irrigation.
  • Impacts of climate change on agriculture after adaptation are estimated to result in small percentage changes in overall global income. Nations with large resource endowments (i.e., developed countries) will fare better in adapting to climate change than those with poor resource endowments (i.e., developing countries and countries in transition, especially in the tropics and subtropics) which will fare worse. This, in turn, could worsen income disparities between developed and developing countries.
  • Although local forest ecosystems will be highly affected, with potentially significant local economic impacts, it is believed that, at regional and global scales, the global supply of timber and non-wood goods and services will adapt through changes in the global market place. However, there will be regional shifts in market share associated with changes in forest productivity with climate change: in contrast to the findings of the SAR, recent studies suggest that the changes will favor producers in developing countries, possibly at the expense of temperate and boreal suppliers.
  • Global agricultural vulnerability is assessed by the anticipated effects of climate change on food prices. Based on the accumulated evidence of modeling studies, a global temperature rise of greater than 2.5 °C is likely to reverse the trend of falling real food prices. This would greatly stress food security in many developing countries.
  相似文献   

2.
Roy Darwin 《Climatic change》2004,66(1-2):191-238
Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g.,67%) or greater. In addition and as expected, CO2 fertilization causesworld crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions.A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial undercurrent economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus New Zealand suffer from this effect in this analysis because under improved economic conditions they are assumed to obtain a relatively large share of income from agricultural exports. When the climate-change and CO2-fertilization scenariosin this analysis are also included, agricultural exports from Australia plus New Zealand decline on average. The resultant declines in agricultural income in Australia plus New Zealand are too large to be completely offset by rising incomes in other sectors. This indicates that regions that rely on agricultural exports for relatively large shares of their income may be vulnerable not only to direct climate-induced agricultural damages, but also to positive impacts induced by greenhouse gas emissions elsewhere.  相似文献   

3.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

4.
Livelihoods in drylands are already challenged by the demands of climate variability, and climate change is expected to have further implications for water resource availability in these regions. This paper characterizes the vulnerability of an irrigation-dependent agricultural community located in the Elqui River Basin of Northern Chile to water and climate-related conditions in light of climate change. The paper documents the exposures and sensitivities faced by the community in light of current water shortages, and identifies their ability to manage these exposures under a changing climate. The IPCC identifies potentially increased aridity in this region with climate change; furthermore, the Elqui River is fed by snowmelt and glaciers, and its flows will be affected by a warming climate. Community vulnerability occurs within a broader physical, economic, political and social context, and vulnerability in the community varies amongst occupations, resource uses and accessibility to water resources, making some more susceptible to changing conditions in the future. This case study highlights the need for adaptation to current land and water management practices to maintain livelihoods in the face of changes many people are not expecting.  相似文献   

5.
Agricultural Impact Assessment, Vulnerability, and the Scope for Adaptation   总被引:1,自引:1,他引:0  
Climate change assessments which have considered climate impacts of a 2xCO2 climate, using models of the global agricultural system, have found small impacts on overall production, but larger regional changes. Production shifts among regions can be considered one mechanism for adaptation. Adaptation at the farm level, through changes in crops, cultivars, and production practices, is another adaptation mechanism. Existing studies differ in how important these mechanisms will be. Studies that have considered yield effects at specific sites have found very wide ranges of impacts. A useful way to evaluate the impacts of climate change, given the uncertainty about future impacts, is to consider vulnerability. Studies have defined vulnerability in terms of yield, farm profitability, regional economy, and hunger. Vulnerability and climate impacts, particularly in terms of higher order effects on profitability and sustainability, will depend on how society and the economy develop. Lower income populations and marginal agricultural regions, particularly arid or flood prone areas, are most vulnerable to climate change.  相似文献   

6.
自IPCC第四次评估报告以来,对城市和农村地区气候变化影响、脆弱性、适应和风险管理文献都在增加。第五次评估报告取得了进展。主要包括:气候变化风险、脆弱性与所受的影响在全球范围不同规模、不同经济水平和地理位置的城市中心均在增加。改善基本服务不足的状况以及建设有恢复力的基础设施系统,可以显著降低城市地区的脆弱性和暴露度,特别是对于风险和脆弱性最高的人群来说。气候变化对农村地区的主要影响将体现在对淡水供应、粮食安全和农业收入的影响等方面。发展中国家农村人口更容易遭受多种非气候压力,包括农业投入不足、土地与自然资源政策问题和环境退化。包括增加可再生能源的供给、鼓励生物燃料种植或发展中国家减少砍伐森林和森林退化而造成的碳排放(REDD+)项目等在内的气候政策,将对有些农村地区有重要的间接影响,既有正面的影响(增加就业机会),也有负面的影响(景观变化和稀有资源冲突增多)。  相似文献   

7.
Adaptation,adaptive capacity and vulnerability   总被引:9,自引:0,他引:9  
This paper reviews the concept of adaptation of human communities to global changes, especially climate change, in the context of adaptive capacity and vulnerability. It focuses on scholarship that contributes to practical implementation of adaptations at the community scale. In numerous social science fields, adaptations are considered as responses to risks associated with the interaction of environmental hazards and human vulnerability or adaptive capacity. In the climate change field, adaptation analyses have been undertaken for several distinct purposes. Impact assessments assume adaptations to estimate damages to longer term climate scenarios with and without adjustments. Evaluations of specified adaptation options aim to identify preferred measures. Vulnerability indices seek to provide relative vulnerability scores for countries, regions or communities. The main purpose of participatory vulnerability assessments is to identify adaptation strategies that are feasible and practical in communities. The distinctive features of adaptation analyses with this purpose are outlined, and common elements of this approach are described. Practical adaptation initiatives tend to focus on risks that are already problematic, climate is considered together with other environmental and social stresses, and adaptations are mostly integrated or mainstreamed into other resource management, disaster preparedness and sustainable development programs.  相似文献   

8.
Research on climate change and agriculture has largely focused on production, food prices, and producer incomes. However, societal interest in agriculture is much broader than these issues. The objective of this paper is to analyze the potential impacts of climate change on an important negative externality from agriculture, water quality. We construct a simulation model of maize production in twelve watersheds within the U.S. Chesapeake Bay Region that has economic and watershed components linking climate to productivity, production decisions by maize farmers, and nitrogen loadings delivered to the Chesapeake Bay. Maize is an important crop to study because of its importance to the region's agriculture and because it is a major source of nutrient pollution. The model is run under alternative scenarios regarding the future climate, future baseline (without any climate change), whether farmers respond to climate change, whether there are carbon dioxide (CO2) enrichment effects on maize production, and whether agricultural prices facing the region change due to climate change impacts on global agricultural commodity markets. The simulation results differ from one scenario to another on the magnitude and direction of change in nitrogen deliveries to the Chesapeake Bay. The results are highly sensitive to the choice of future baseline scenario and to whether there are CO2 enrichment effects. The results are also highly sensitive to assumptions about the impact of climate change on commodity prices facing farmers in the Chesapeake Bay region. The results indicate that economic responses by farmers to climate change definitely matter. Assuming that farmers do not respond to changes in temperature, precipitation, and atmosphericCO2 levels could lead to mistaken conclusions about the magnitude and direction of environmental impacts.  相似文献   

9.
Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicator Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.  相似文献   

10.
Increasing frequency, intensity and duration of severe weather events are posing major challenges to global food security and livelihoods of rural people. Agriculture has evolved through adaptation to local circumstances for thousands of years. Local experience in responding to severe weather conditions, accumulated over generations and centuries, is valuable for developing adaptation options to current climate change. This study aimed to: (i) identify tree species that reduce vulnerability of cropping systems under climate variability; and (ii) develop a method for rapidly assessing vulnerability and exploring strategies of smallholder farmers in rural areas exposed to climate variability. Participatory Rural Appraisal methods in combination with Geographical Information Systems tools and statistical analysis of meteorological data were used to evaluate local vulnerability to climate change and to investigate local adaptation measures in two selected villages in Vietnam, one of the countries most vulnerable to climate change. The low predictability of severe weather events makes food crops, especially grain production, insecure. This study shows that while rice and rain-fed crops suffered over 40 % yield losses in years of extreme drought or flood, tree-based systems and cattle were less affected. 13 tree species performed well under the harsh local climate conditions in home and forest gardens to provide income, food, feed and other environmental benefits. Thus, this research suggests that maintenance and enhancement of locally evolved agroforestry systems, with high resilience and multiple benefits, can contribute to climate change adaptation.  相似文献   

11.
Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14?% of national GDP corresponding to agriculture, employment of 21?% of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80?% of crops would be impacted in more than 60?% of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation.  相似文献   

12.
This article analyses the interactions between agricultural policy measures in the EU and the factors affecting GHG emissions from agriculture on the one hand, and the adaptation of agriculture to climate change on the other. To this end, the article uses Slovenia as a case study, assessing the extent to which Slovenian agricultural policy is responding to the challenges of climate change. All agricultural policy measures related to the 2007–2013 programming period were analysed according to a new methodological approach that is based on a qualitative (expert evaluation) and a quantitative (budgetary transfers validation) assessment. A panel of experts reached consensus on the key factors through which individual measures affect climate change, in which direction and how significantly. Data on budgetary funds for each measure were used as weights to assess their relative importance. The results show that there are not many measures in (Slovenian) agricultural policy that are directly aimed at reducing GHG emissions from agriculture or at adaptation to climate change. Nevertheless, most affect climate change, and their impact is far from negligible. Current measures have both positive and negative impacts, but overall the positive impacts prevail. Measures that involve many beneficiaries and more budgetary funds had the strongest impact on aggregate assessments. In light of climate change, agricultural policy should pay more attention to measures that are aimed at raising the efficiency of animal production, as it is the principal source of GHG emissions from agriculture.

Policy relevance

Agricultural policy must respond to climate challenges and climate change impact assessment must be included in the process of forming European agricultural policy. Agricultural policy measures that contribute to the reduction of emissions and adaptation, whilst acting in synergy with other environmental, economic and social goals, should be promoted. The approach used in this study combines qualitative and quantitative data, yielding an objective assessment of the climate impact of agricultural policy measures and providing policy makers with a tool for either ex ante or ex post evaluations of climate-relevant policy measures.  相似文献   

13.
The present study involves using the Canadian Climate Centre (CCC) climate change scenario to evaluate the impacts of a CO2-induced climate change on agriculture in Québec and vicinity. Climate change using the CCC General Circulation Model (GCM) data are fed into a crop model (FAO) so as to gauge the changes in agroclimatic factors such as growing season length and growing degree days, and subsequently potential yield changes for a variety of cereal (C3 and C4), leguminous, oleaginous, vegetable and special crops, for twelve major agricultural regions in southern Québec. Our results show that depending upon the agricultural zone and crop type, yields may increase (ex. corn and sorghum by 20%) or decrease (ex. wheat and soybean by 20 to 30%). Also, these crop yield changes appear to be related to acceleration in maturation rates, mainly to change in moisture stress and to shifts in optimal thermal growth conditions. These possible shifts in agricultural production potentials would solicit the formulation of appropriate adaptation strategies.  相似文献   

14.
The high uncertainty associated with the effect of global change on water resource systems calls for a better combination of conventional top–down and bottom–up approaches, in order to design robust adaptation plans at the local scale. The methodological framework presented in this article introduces “bottom–up meets top–down” integrated approach to support the selection of adaptation measures at the river basin level by comprehensively integrating the goals of economic efficiency, social acceptability, environmental sustainability and adaptation robustness. The top–down approach relies on the use of a chain of models to assess the impact of global change on water resources and its adaptive management over a range of climate projections. Future demand scenarios and locally prioritised adaptation measures are identified following a bottom–up approach through a participatory process with the relevant stakeholders and experts. The optimal combinations of adaptation measures are then selected using a hydro-economic model at basin scale for each climate projection. The resulting adaptation portfolios are, finally, climate checked to define a robust least-regret programme of measures based on trade-offs between adaptation costs and the reliability of supply for agricultural demands.This innovative approach has been applied to a Mediterranean basin, the Orb river basin (France). Mid-term climate projections, downscaled from 9 General Climate Models, are used to assess the uncertainty associated with climate projections. Demand evolution scenarios are developed to project agricultural and urban water demands on the 2030 time horizon. The results derived from the integration of the bottom–up and top–down approaches illustrate the sensitivity of the adaptation strategies to the climate projections, and provide an assessment of the trade-offs between the performance of the water resource system and the cost of the adaptation plan to inform local decision-making. The article contributes new methodological elements for the development of an integrated framework for decision-making under climate change uncertainty, advocating an interdisciplinary approach that bridges the gap between bottom–up and top–down approaches.  相似文献   

15.
In this essay, we explore the contribution of establishing off-grid community micro-hydropower systems in the Dominican Republic to climate change mitigation and adaptation. Forty-five micro-hydropower systems were set up over 16 years that are sustainably and autonomously managed by the local groups and provide access to electricity to communities in remote areas while reducing CO2 emissions and favoring carbon sequestration. In addition to mitigating climate change by avoiding emissions and reforestation of more than 28,000 t of CO2 per year, these initiatives have improved the adaptive capacity of the local communities through contributing to biodiversity protection, climate policy development, and governance; as well as enhancing the wellbeing of families through increased savings, improved education, and increased income generation opportunities. We elaborate the key factors for success and considerations for meeting future challenges.  相似文献   

16.
We identify and examine how policy intervention can help Canada's Inuit population adapt to climate change. The policy responses are based on an understanding of the determinants of vulnerability identified in research conducted with 15 Inuit communities. A consistent approach was used in each case study where vulnerability is conceptualized as a function of exposure-sensitivity to climatic risks and adaptive capacity to deal with those risks. This conceptualization focuses on the biophysical and human determinants of vulnerability and how they are influenced by processes and conditions operating at multiple spatial-temporal scales. Case studies involved close collaboration with community members and policy makers to identify conditions to which each community is currently vulnerable, characterize the factors that shape vulnerability and how they have changed over time, identify opportunities for adaptation policy, and examine how adaptation can be mainstreamed. Fieldwork, conducted between 2006 and 2009, included 443 semi-structured interviews, 20 focus groups/community workshops, and 65 interviews with policy makers at local, regional, and national levels. Synthesizing findings consistent across the case studies we document significant vulnerabilities, a function of socio-economic stresses and change, continuing and pervasive inequality, and magnitude of climate change. Nevertheless, adaptations are available, feasible, and Inuit have considerable adaptive capacity. Realizing this adaptive capacity and overcoming adaptation barriers requires policy intervention to: (i) support the teaching and transmission of environmental knowledge and land skills, (ii) enhance and review emergency management capability, (iii) ensure the flexibility of resource management regimes, (iv) provide economic support to facilitate adaptation for groups with limited household income, (v) increase research effort to identify short and long term risk factors and adaptive response options, (vi) protect key infrastructure, and (vii) promote awareness of climate change impacts and adaptation among policy makers.  相似文献   

17.
The Western Australian wheat-belt has experienced more rainfall decline than any other wheat-cropping region in Australia. Future climate change scenarios suggest that the Western Australian wheat-belt is likely to see greater future reductions in rainfall than other regions, together with a further increase in temperatures. While these changes appear adverse for water-limited rain-fed agriculture, a close analysis of the changes and their impacts reveals a more complex story. Twentieth century changes in rainfall, temperature and atmospheric CO2 concentration have had little or no overall impact on wheat yields. Changes in agricultural technology and farming systems have had much larger impacts. Contrary to some claims, there is no scientific or economic justification for any immediate actions by farmers to adapt to long-term climate change in the Western Australian wheat-belt, beyond normal responses to short-term variations in weather. Rather than promoting current change, the most important policy response is research and development to enable farmers to facilitate future adaptation to climate change. Research priorities are proposed.  相似文献   

18.
Understanding vulnerability to the impacts of global environmental change and identifying adaptation measures to cope with these impacts require localized investigations that can help find actual and exact answers to the questions about who and what are vulnerable, to what are they vulnerable, how vulnerable are they, what are the causes of their vulnerability, and what responses can lessen their vulnerability. People living in forests are highly dependent on forest goods and services, and are vulnerable to forest changes both socially and economically. In the Congo basin, climate change effects on forest ecosystems are predicted to amplify the existing pressure on food security urging expansion of current agricultural lands at the expense of forest, biodiversity loss and socioeconomic stresses. The paper aimed at exploring vulnerability and adaptation needs to climate change of local communities in the humid forest zone of Cameroon. Field work was conducted in two forest communities in Lekié and in Yokadouma in the Center and Eastern Regions of Cameroon respectively. The assessment was done using a series of approaches including a preparatory phase, fieldwork proper, and validation of the results. Results show that: (a) the adverse effects of climate conditions to which these communities are exposed are already being felt and exerting considerable stress on most of their livelihoods resources; (b) drought, changing seasons, erratic rain patterns, heavy rainfall and strong winds are among the main climate-related disturbances perceived by populations in the project sites; (c) important social, ecological and economic processes over the past decades seemed to have shaped current vulnerability in the sites; (d) Some coping and adaptive strategies used so far are outdated; and specific adaptation needs are identified and suggestions for facilitating their long-term implementations provided.  相似文献   

19.
Research aiming to reduce the vulnerability of agricultural systems to climate variability and change requires practical appraisal of their climatic exposure. We propose a method to map local climatic conditions over a given period to a set of productivity and management-related indicators that are specific to grassland-based livestock systems. Our method based on a reference system balances herbage production and feed requirements over a long period (≥ 30 years) and provides boundaries for productivity-defined seasons and indicators for surplus or shortage of herbage at seasonal and annual scales. This exposure-assessment method was applied to five climatically contrasting locations in south-western France. The trends and variability of the exposure indicators were analysed for past (1980–2010) and future (2035–2065) periods, considering the A1B scenario of the IPCC. Despite high year-to-year variability and the heterogeneity of the climatic situations studied, we show that climate change can modify the boundaries of productivity-defined seasons and seasonal herbage surplus or shortage. Moreover, the exposure indicators succeed in detecting climate-induced changes and distinguishing situations where a classical exposure indicator, such as annual forage production, could not. The exposure indicators highlight the forage productivity and the timing of production associated with local climatic conditions. These features fit the temporal scale at which farmers consider farm management and are highly suitable for identifying adaptation strategies that reduce the vulnerability of grassland-based livestock systems.  相似文献   

20.
Firm relocation as adaptive response to climate change and weather extremes   总被引:1,自引:0,他引:1  
Growing scientific evidence suggests that human-induced climate change will bring about large-scale environmental changes such as sea-level rise and coastal flooding, extreme weather events and agricultural disruptions. The speed and extent of these changes and the expected impacts on social and corresponding economic and industrial systems are now moving to the forefront of debates. In this paper, we argue that climate change will lead to significant disruptions to firms which might ultimately create the necessity of a geographical shift of firm and industrial activities away from regions highly affected by climate change. Such a shift might become necessary due to (1) direct disruptions through climate change impacts on firm operations, for instance through droughts, floods, or sea level rise, and due to (2) disruptions in a firm's supplier, buyer or resource base that lead to flow-on effects and adverse consequences for a firm. We propose a framework for integrating firm relocation decisions into firm adaptive responses to climate change. The framework consists of three assessment steps: the level of risk from climate change impacts at a firm's location, the feasibility of relocation, and associated costs and benefits. We apply the framework to two case examples. The first case of electricity distribution firms in Victoria/Australia illustrates how the relocation (undergrounding) of cables could decrease the vulnerability of distribution networks to bushfires and the risk of electricity-caused fires, but would require significant investments. The second case of firms in the Australian pastoral industry points to geographic diversification of pastoral land holdings as possible adaptation option, but also to constraints in form of availability of suitable properties, ties to local communities, and adverse impacts on biodiversity. Implications for adaptation research and practice are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号