首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.  相似文献   

2.
TC4 titanium alloy was friction stir welded using a W-Re pin tool,and the defect-free weld was produced with proper welding parameters.The joint consists of stir zone,heat affected zone and base material.The stir zone is characterized by equiaxed dynamically recrystallized α phases and transformed β phases with fine α+β lamellar microstructure.The microstructure of the heat-affected zone is similar to that of the base material,but there is an increase in the volume fraction of β.Transverse tensile strength of the joint is 92% that of the base material,and the joint is fractured in the stir zone and the fracture surface possesses typical plastic fracture characteristics.The stir zone is the weakest part of the joint,through which the tensile characteristics of the TC4 joint can be explained.  相似文献   

3.
镁合金MIG焊接工艺及焊接接头组织性能分析   总被引:2,自引:1,他引:1       下载免费PDF全文
王鹏  宋刚  刘黎明 《焊接学报》2009,30(12):109-112
采用脉冲 MIG 焊接工艺,进行 AZ31B 镁合金板材的焊接性分析,焊后利用光学显微镜、扫描电子显微镜、万能拉伸试验机和显微硬度仪等设备对焊接接头的组织与力学性能进行了检测分析.结果表明,通过优化工艺参数,采用脉冲 MIG 焊接工艺可以在不开坡口、不需背面强制成形的条件下,实现镁合金单面焊接双面成形,获得连续、没有表面缺陷的焊接接头.焊接接头的热影响区较窄,晶粒稍有长大.焊缝区组织均匀,晶粒细小,硬度值高于母材.焊接接头的抗拉强度可达到母材的 95% 以上.
Abstract:
The pulsed MIG welding was used to weld AZ31B Mg alloy, and the weldability of the alloy was studied. The microstructure, mechanical property and hardness of the welded joint were investigated via the metal phase microscopy, scanning electron microscope, tensile testing machine and hardness instrument. The results show that one-side welding with back can be obtained through this technique at optimized parameters when there was no groove and no shaped ban, which continuous butt joints have no surface defects.The heat-affected zone of the joints is narrow, and the grains of the zone are slightly larger than that of the base metal. The grains of fusion zone are tiny, the microstructure is homogeneous and the hardness of welded joint is higher than that of the base metal. The tensile strength is up to 95% of the base metal.  相似文献   

4.
大厚度TC21钛合金电子束焊接试验   总被引:4,自引:4,他引:0       下载免费PDF全文
对56mm厚TC21钛合金进行了电子束对接试验,对接头显微组织和力学性能进行了研究.结果表明,接头焊缝区组织形态以柱状β晶粒为基体,针状的马氏体弥散其中;热影响区从焊缝到母材分为三个区域,依次为等轴再结晶β晶粒区、片状和针状а相形成的魏氏组织区以及片状α相聚集长大的区域;熔合区内柱状晶与等轴晶联生.接头强度达到母材水平,断裂发生在母材内,接头厚度方向性能一致.接头塑性损失较大,只达到母材的50%左右.接头焊缝区硬度最高,其次是热影响区的等轴晶区和魏氏组织区,而热影响区内片状α相聚集长大的区域硬度值最低.
Abstract:
Electron beam welding of TC21 56 mm titanium alloy was carried out. The microstructure and the mechanical properties of welded joints were analyzed and tested. The results showed that the weld zone consisted of the columnar β gains, and in which the transgranular acicular α' martensite were dispersedly distributed. HAZ can be divided into three parts from base metal to weld zone, which are the equiaxed recrystallized β grain zone, Widmanstaten structure zone formed by lamellar and aeicular α phases and lamellar a phase coarsening zone. Fusion zone consists of the adnate columnar and equiaxed grains. Tensile strength of joints reaches to that of base metal and the failure appears in the base metal. The mechanical properties are uniform along the vertical direction. Plasticity in the welded joint is greatly decreased and only up to 50% of that of the base metal. The microhardness in weld zone is the highest, and that of the equiaxed grain zone and Widmanstaten structure zone in HAZ is higher, and the microhardness in columnar a phase coarsening zone is the lowest.  相似文献   

5.
SAW308L submerged arc welding wire and SJ601A submerged arc welding flux were selected to weld the 12 mm 08Cr19MnNi3Cu2N low nickel and high nitrogen austenitic stainless steel plates with three different welding heat input, and microstructure,tensile properties, microhardness and corrosion properties of the welded joints were studied. The results show that no defects are found in the three groups of welded joints, and the welded joints have better performance.The tensile strength of 08Cr19MnNi3Cu2N stainless steel welded joints with different heat input is slightly lower than that of the base metal,and fracture occurs in the weld zone, and the hardness of the weld zone is lower than that of the base metal. The weld microstructure of stainless steel welded joints with different heat input is composed of austenite + δ ferrite, and ferrite is uniformly distributed in austenite. With the increase of the welding heat input, the ferrite content in the weld zone decrease gradually, the grain size in the thermal affected zone increase gradually, and the impact toughness reduce.  相似文献   

6.
The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides useful information for the investigation of FSW process. Simulation resuits show that the temperature distribution of the weld gradually decreases toward periphery in a radiate format, whose center is the probe, and the highest temperature in the weld can reach about 400℃. The initial terminal of the weld is a zone, in which the temperature gradient is great, and defects of the welding are easily produced in this zone. Temperature change at the end of the welded joint is as layer variation, the local serious defects are not easy to produce in this zone.  相似文献   

7.
Mechanical properties of SMA W (shielded metal arc welding) weld metal ( yield strength higher than 900 MPa ) with systemazic additions of copper ( up to 1.48 wt% ) were tested, The microstructure and precipitates in different regions were analyzed by optical microscope and transmission electron microscope, The results indicate that copper improves the low temperature toughness of weld metal when the copper content is low and reaches the peak value 48 J ( at - 50℃ ) with 0. 2 wt% copper additions. When the content is high the copper precipitates as 8-Cu phase in the reheat zone of middle beads. These precipitates improve the strength of the weld metal evidently ( yield strength up to 975 MPa) without obvious effect on the low temperature toughness. The copper within 1.1 wt% content can improve the strength without toughness loss.  相似文献   

8.
采用钨极惰性气体焊对镀锌薄板 SGCC 实施等厚拼焊,测试分析了拼焊板焊接接头的金相组织、显微硬度,并对拼焊板和母材试样进行杯突试验.结果表明,在拼焊过程中,母材的散热情况不同会造成焊缝金相组织在靠近母材的局部区域有很大差异.焊缝熔合区组织为粗的片状与块状先共析铁素体沿柱状晶界分布,晶内为魏氏体组织和片状珠光体,热影响区为块状的珠光体和铁素体,导致了焊缝及其热影响区的硬度均高于母材,对拼焊板的整体成形性能产生负面影响;同时,焊缝杯突值较母材有一定程度的降低,揭示其焊缝深冲性能低于母材.
Abstract:
The microstructure and micro-hardness of welded joint of SGCC by tungsten inert-gas (TIG) welding are studied, and the cupping test of Tailor-welded blank and base metal are studied.The results show that in the welding process, the microstructure of weld will have great diversity at local region closing parent metal because of the different cooling condition of the parent metal. The microstructure of welding fusion zone is massive sheet proeutectoid ferrite distribution along the columnar grain boundaries, intragranular organizations are Widmanstatten and sheet pearlite structure, and the microstructure in HAZ is massive pearlite and ferrite, which make the micro-hardness value of welding seam and HAZ higher than that of base metal and lead negative influence to the formability of Tailorwelded blank. The cupping value of weld seam reduces to some extent compared with that of base metal, which indicates that the formability of weld seam is not good as that of base metal.  相似文献   

9.
对 Ti55 与 Ti60 合金薄板进行了电子束焊接,研究了电子束焊接工艺参数对接头组织及力学性能的影响.结果表明,焊缝区形成大量针片状的α' 马氏体,焊缝中心为粗大的柱状晶.焊接工艺参数对焊缝组织和接头抗拉强度有一定影响,接头室温抗拉强度高于母材,600℃时接头抗拉强度与 Ti60 母材相当,抗弯强度达到母材的 80% 左右,冲击韧度能够达到母材的 90% 以上,断裂发生在热影响区处,为韧性断裂.
Abstract:
Ti55 and Ti60 titanium alloy sheets were welded by electron beam, and the influences of parameters on microstmcture and mechanical properties of welding joints were studied. The results show that weld zone is characterized by acicular α' martensite plate,and weld center is formed by coarse columnar crystals. Welding parameters can affect microstructure and tensile strength to a certain extent. At room temperature, the tensile strength of joint is higher than that of base metal. At a higher temperature of 600 ℃, tensile strength of joint is about equal to that of Ti60, and bending strength can be up to 80% of that of base metal, even impact toughness also can be larger than 90% of base metal. Failure occurs in heat-affected zone, and the fracture mode shows toughness characteristic.  相似文献   

10.
The ultra-fine grain (UFG) steel is welded by using resistance spot welding technique with or without requirement of upsetting force.Metallographic inspection shows that the grain size of weld nugget is larger than that of the base metal and the microstructure is altered significantly.In addition,contracting defects such as air holes can be found in the nugget center.The experiments show that the defects can be effectively avoided by the technique of adding upsetting force during the nugget cooling and crystallizing processes.In tensile shear tests,the welding joint starts to crack from the inner edge of the corona bond.The results of micro-hardness tests show that the newly born martensite structure dramatically improves the hardness of the joint.Under the interactions between residual stresses and regenerated fine grains,the micro-hardness of the heat-affected zone (HAZ) is lower than that of the nugget,but evidently higher than that of the base metal.  相似文献   

11.
搅拌针形状对搅拌摩擦焊焊缝截面形貌的影响   总被引:5,自引:5,他引:5       下载免费PDF全文
采用镶嵌异种材料作为标识材料的方法,用不同搅拌针形状的搅拌头,进行了搅拌摩擦焊试验.结果表明,搅拌针形状影响焊缝塑化金属流动的行为,导致焊缝截面形貌发生变化.搅拌针表面的反螺纹使搅拌针周围塑化金属向下流动,迫使搅拌针端部周边金属向上运动,焊核中心处于焊缝横截面下部;正螺纹使搅拌针周围塑化金属向上流动,迫使轴肩下方及周边金属向下运动,焊核中心处于焊缝横截面上部.改变搅拌针形状及长度,可以改变搅拌针下方及附近区域塑化金属的流动形态,从而改变焊缝底部的成形及包铝层进入焊缝的深度.  相似文献   

12.
Friction stir spot welding is performed on 5083 Al alloy using tools with a conventional cylindrical pin and the proposed triangular pin. Partial metallurgical bond (called as ‘hook’) is formed in the weld region between the overlapped metal sheets. The tool-pin geometry significantly affects the hook shape. Under the same process condition, welds made with the cylindrical pin have a continuous hook which bypasses the stir zone and points downward towards the weld bottom. By contrast, for welds made with the triangular pin, the hook is directed upwards and then arrested at the periphery of the stir zone. The difference in the hook shape could be attributed to the asymmetric rotation of the triangular pin that may cause the material in the vicinity of the pin to move back and forth in the radial direction resulting in the hook being broken-up (dispersed) in the stir zone. In addition, the triangular pin results in a finer grain structure in the stir zone compared to the cylindrical pin. Static strength of welds made with the triangular pin is twice that of welds made with the cylindrical pin, which is attributed to the finer grain size as well as tensile failure mode as a result of the arrested hook.  相似文献   

13.
焊缝金属厚度方向的流动与洋葱瓣花纹的形成   总被引:5,自引:4,他引:1       下载免费PDF全文
研究了在铝合金薄板与铜箔交替叠加的多层板搅拌摩擦焊过程中焊缝金属的塑性流动行为.结果表明,用带螺纹的搅拌针焊接时,搅拌针周围金属沿螺纹在焊缝厚度方向产生剧烈的流动,在螺纹端部脱离搅拌针并向周围挤压母材,形成实心环形挤压区,与周围母材有明显的界面.洋葱瓣花纹是实心环形挤压区在焊缝横截面上的表现形式.搅拌针表面的螺纹提供金属在焊缝厚度方向流动的驱动力.搅拌头顺时针旋转时,用左螺纹搅拌针焊接的焊缝横截面上,洋葱瓣花纹的中心偏向焊缝底部;用右螺纹搅拌针焊接的横截面上,花纹的中心偏向焊缝表面.  相似文献   

14.
采用铝箔作为标示材料,用不同旋向、不同螺距的搅拌针进行了搅拌摩擦焊试验.结果表明,搅拌针的旋向决定塑性金属在厚度方向上的迁移方向,带左旋螺纹的搅拌针驱使搅拌针附近的塑化金属向下迁移,向下迁移的金属不断向焊缝底部积累并受到垫板的阻碍作用,迫使塑性金属挤压外围的材料向上迁移,右旋螺纹的搅拌针作用方式则相反;建立的"抽吸-挤压"模型能很好的解释塑性金属在焊缝厚度方向上的迁移方式;螺距较大的搅拌针有利于塑性金属在焊缝厚度方向上的迁移,但也容易使焊缝底部的包铝层卷入焊缝中.  相似文献   

15.
Q235钢板与6082铝合金搅拌摩擦焊工艺   总被引:2,自引:2,他引:0       下载免费PDF全文
王希靖  邓向斌  王磊 《焊接学报》2016,37(1):99-102
通过对Q235钢板和6082铝合金进行搅拌摩擦焊接,并用正交试验对搅拌摩擦焊工艺参数进行优化. 结果表明,焊接过程中,将钢板放在返回侧,铝板放在前进侧[1],离搅拌针较近的钢侧金属发生软化,并且在轴肩横向切应力作用下形成短"钉子",最终在搅拌针的旋转作用下填充到搅拌针后方形成的空腔内,当下压量为0.2 mm时,比较容易得到优质的焊缝;搅拌针旋转速度为260 r/min,焊接速度为16 mm/min,针头偏向铝侧0.2 mm时,所得焊缝的抗拉强度为141.204 MPa,断裂发生在铝侧焊核区与热力影响区的交界处;钢侧热机影响区的硬度比母材高,而铝侧热机影响区比母材低.  相似文献   

16.
Friction stir spot welding is performed on 5754 Al alloy to investigate the effect of tool geometry on hook formation. Partial metallurgical bond (called as ‘hook’) is formed in the weld region between the overlapped metal sheets. The tool geometry is found to significantly affect the hook formation. First, welds are made to compare the effect of three shoulder profiles: concave, convex and flat (all having threaded cylindrical pins) on the hook geometry and static strength. The inherent concave profile resulted in a higher effective top sheet thickness that produced the highest weld strength. Next, with the concave shoulder profile selected, the effects of two different pin profiles: cylindrical and triangular are evaluated. Under the same process condition, welds made with the cylindrical pin have a continuous hook which bypasses the stir zone and terminates close to the keyhole. By contrast, for welds made with the triangular pin, the hook is directed upwards and then arrested at the periphery of the stir zone. The difference in the hook shape can be attributed to the material flow. Prior study shows that the static strength of welds made with the triangular pin is twice that of welds made with the cylindrical pin.  相似文献   

17.
胡礼木 《中国焊接》2006,15(2):60-63
An investigation on the quality of PVC joints welded by friction stir welding ( FSW ) with different shape of pin was carried out. The results show that when the rotating speed of stir tool is 1 660 r/min and the welding speed is 25 mm/min, the beads welded with upright taper pin are plump and joined well, the average tensile strength of which is 19. 1 MPa (the maximum is 20. 3 MPa), being 49. 2% of that of parent material. The beads welded with cylindrical pin are also joined rather well plump and smooth, the average tensile strength of which is 17. 6 MPa, being 45.3% of that of parent material. The beads welded with inverted taper and cylindrical screw pin are only partially joined or disjoined. The optimum welding temperature range of PVC is 180 - 190℃. If the temperature beyond 200℃ the material will be burnt. If the temperature is under 170℃ the material will be joined partially or disjoined.  相似文献   

18.
采用搅拌针长度相同而形状不同的搅拌头对3mm厚的LY12CZ铝合金进行了搅拌摩擦焊搭接试验。结果表明,表面带有螺纹的搅拌针使板材间的搭接界面在厚度方向上发生迁移,左螺纹使邻近搅拌针的塑化金属向下迁移,在搅拌针端部积聚,挤压周边金属向上运动,导致搭接界面向上迁移;右螺纹使邻近搅拌针的塑化金属向上迁移,在搅拌针根部积聚并受轴肩作用,挤压周边金属向下运动,导致搭接界面向下迁移。若搅拌针表面是光滑的,搭接界面在厚度方向上的迁移减小,但返回边界面向焊缝中心延伸的程度增大。  相似文献   

19.
采用不同端部形状的搅拌针对12 mm厚的6061-T4铝合金进行对接焊,观察了匙孔处不同横截面上焊缝形貌,分析了搅拌针端部形状变化对FSW接头根部金属流动行为的影响.结果表明,FSW焊缝区金属沿焊缝厚度方向上的迁移主要受搅拌针表面螺纹影响,而搅拌针端部锥度对接头根部金属的迁移的影响可分为两个方面,一是脱离螺纹作用的金属向下迁移,二是焊核区金属的向上迁移.搅拌针端面直径影响FSW接头未焊透厚度.随搅拌针端面直径增加,搅拌针可焊板材厚度增大.  相似文献   

20.
In this study for the first time, the effects of decrease in heat inflow to the weld metal in friction stir process by utilising semisolid processing and decreasing the pin rotational speed as well as increasing the pin transverse speed were examined. As a result, the characteristic loss of hardness and strength in the weld zone were eliminated. The results showed that by approaching the ultrafine microstructure in the weld zone through the hybrid FSW/SSW process, the hardness and elongation values reached to 90?Hv and 8.88%, respectively. These are only slightly different from those of the base metal of the welded samples. Furthermore, the ultimate tensile strength of the samples welded by the hybrid technique was found to be about 167?MPa that was higher than those of the samples welded by friction stir welding (151?MPa) and semisolid welding (114?MPa) techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号