首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The pathway of autotrophic CO2 fixation was studied in the phototrophic bacterium Chloroflexus aurantiacus and in the aerobic thermoacidophilic archaeon Metallosphaera sedula. In both organisms, none of the key enzymes of the reductive pentose phosphate cycle, the reductive citric acid cycle, and the reductive acetyl coenzyme A (acetyl-CoA) pathway were detectable. However, cells contained the biotin-dependent acetyl-CoA carboxylase and propionyl-CoA carboxylase as well as phosphoenolpyruvate carboxylase. The specific enzyme activities of the carboxylases were high enough to explain the autotrophic growth rate via the 3-hydroxypropionate cycle. Extracts catalyzed the CO2-, MgATP-, and NADPH-dependent conversion of acetyl-CoA to 3-hydroxypropionate via malonyl-CoA and the conversion of this intermediate to succinate via propionyl-CoA. The labelled intermediates were detected in vitro with either 14CO2 or [14C]acetyl-CoA as precursor. These reactions are part of the 3-hydroxypropionate cycle, the autotrophic pathway proposed for C. aurantiacus. The investigation was extended to the autotrophic archaea Sulfolobus metallicus and Acidianus infernus, which showed acetyl-CoA and propionyl-CoA carboxylase activities in extracts of autotrophically grown cells. Acetyl-CoA carboxylase activity is unexpected in archaea since they do not contain fatty acids in their membranes. These aerobic archaea, as well as C. aurantiacus, were screened for biotin-containing proteins by the avidin-peroxidase test. They contained large amounts of a small biotin-carrying protein, which is most likely part of the acetyl-CoA and propionyl-CoA carboxylases. Other archaea reported to use one of the other known autotrophic pathways lacked such small biotin-containing proteins. These findings suggest that the aerobic autotrophic archaea M. sedula, S. metallicus, and A. infernus use a yet-to-be-defined 3-hydroxypropionate cycle for their autotrophic growth. Acetyl-CoA carboxylase and propionyl-CoA carboxylase are proposed to be the main CO2 fixation enzymes, and phosphoenolpyruvate carboxylase may have an anaplerotic function. The results also provide further support for the occurrence of the 3-hydroxypropionate cycle in C. aurantiacus.  相似文献   

2.
OBJECTIVES: A recent report (J Clin Invest 1993;92:831-9) found no effect of glutamate plus aspartate on metabolic pathways in the heart, but the experimental conditions did not model clinical cardioplegia. The purpose of this study was to determine the effects of glutamate and aspartate on metabolic pathways feeding the citric acid cycle during cardioplegic arrest in the presence of physiologic substrates. METHODS: Isolated rat hearts were supplied with fatty acids, lactate, pyruvate, glucose, and acetoacetate in physiologic concentrations. These substrates were enriched with 13C, which allowed a complete analysis of substrate oxidation by 13C-nuclear magnetic resonance spectroscopy in one experiment. Three groups of hearts were studied: arrest with potassium cardioplegic solution, arrest with cardioplegic solution supplemented with glutamate and aspartate (both in concentrations of 13 mmol/L), and a control group without cardioplegic arrest. RESULTS: In potassium-arrested hearts, the contributions of fatty acids and lactate to acetyl coenzyme A were reduced, and acetoacetate was the preferred substrate for oxidation in the citric acid cycle. The addition of aspartate and glutamate in the presence of cardioplegic arrest did not further alter patterns of substrate utilization substantially, although acetoacetate use was somewhat lower than with simple cardioplegic arrest. When [U-13C]glutamate (13 mmol/L) and [U-13C]aspartate (13 mmol/L) were supplied as the only compounds labeled with 13C, little enrichment in citric acid cycle intermediates could be detected. CONCLUSIONS: Glutamate and aspartate when added to potassium cardioplegic solutions have relatively minor effects on citric acid cycle metabolism.  相似文献   

3.
Pasteurella multocida was examined for glucose and mannose transport. P. multocida was shown to possess a phosphoenolpyruvate (PEP):mannose phosphotransferase system (PTS) that transports glucose as well as mannose and was functionally similar to the Escherichia coli mannose PTS. Phosphorylated proteins with molecular masses similar to those of E. coli mannose PTS proteins were visualized when incubated with 32P-PEP. The presence of an enzyme IIAGlc which could play an important role in regulation, as described in other Gram-negative bacteria, was detected. The enzymes of the pentose-phosphate pathway were present in P. multocida growth on glucose. The activity of 6-phosphofructokinase (the key enzyme of the Embden-Meyerhof pathway (EMP)), was very low in cell extracts, suggesting that EMP is not the major pathway for glucose catabolism.  相似文献   

4.
5.
The mechanisms of potentiation by fagomine, an N-containing pseudo-sugar derived from mulberry leaves, of insulin secretion from isolated rat pancreatic islets in response to glucose was studied. Fagomine at more than 1 mmol/L significantly potentiated insulin secretion induced by 10 mmol/L glucose. The pseudo-sugar, however, did not affect the basal insulin secretion assessed at a glucose concentration of 3.5 mmol/L. The effects of fagomine on 10 mmol/L and 20 mmol/L glucose-induced insulin secretion were not significantly different. Fagomine (4 mmol/L) also potentiated glyceraldehyde-induced insulin secretion, but not the leucine-induced type. Glycolysis assessed by lactate production from glucose was significantly enhanced. The amounts of all intermediates (from glucose 6-phosphate to glyceraldehyde 3-phosphate) of the upper part of the glycolytic pathway in islets incubated with 20 mmol/L glucose were not affected by 4 mmol/L fagomine. The rise in the ATP/ADP ratio through both the glycolytic pathway and the citric acid cycle is believed to be pivotal in glucose- and glyceraldehyde-induced insulin secretion; whereas the ATP/ADP ratio rise through the citric acid cycle via the formation of acetyl-CoA is involved in leucine-induced insulin secretion. Our findings, together with these considerations, suggest that fagomine potentiates glucose-induced insulin secretion through acceleration of some step(s) after the formation of glyceraldehyde 3-phosphate in the glycolytic pathway.  相似文献   

6.
Occurrence of the hsp70 (dnaK) gene was investigated in various members of the domain Archaea comprising both euryarchaeotes and crenarchaeotes and in the hyperthermophilic bacteria Aquifex pyrophilus and Thermotoga maritima representing the deepest offshoots in phylogenetic trees of bacterial 16S rRNA sequences. The gene was not detected in 8 of 10 archaea examined but was found in A. pyrophilus and T. maritima, from which it was cloned and sequenced. Comparative analyses of the HSP70 amino acid sequences encoded in these genes, and others in the databases, showed that (i) in accordance with the vicinities seen in rRNA-based trees, the proteins from A. pyrophilus and T. maritima form a thermophilic cluster with that from the green nonsulfur bacterium Thermomicrobium roseum and are unrelated to their counterparts from gram-positive bacteria, proteobacteria/mitochondria, chlamydiae/spirochetes, deinococci, and cyanobacteria/chloroplasts; (ii) the T. maritima HSP70 clusters with the homologues from the archaea Methanobacterium thermoautotrophicum and Thermoplasma acidophilum, in contrast to the postulated unique kinship between archaea and gram-positive bacteria; and (iii) there are exceptions to the reported association between an insert in HSP70 and gram negativity, or vice versa, absence of insert and gram positivity. Notably, the HSP70 from T. maritima lacks the insert, although T. maritima is phylogenetically unrelated to the gram-positive bacteria. These results, along with the absence of hsp70 (dnaK) in various archaea and its presence in others, suggest that (i) different taxa retained either one or the other of two hsp70 (dnaK) versions (with or without insert), regardless of phylogenetic position; and (ii) archaea are aboriginally devoid of hsp70 (dnaK), and those that have it must have received it from phylogenetically diverse bacteria via lateral gene transfer events that did not involve replacement of an endogenous hsp70 (dnaK) gene.  相似文献   

7.
A new mathematical model, based on the observation of 13C-NMR spectra of two principal metabolites (glutamate and aspartate), was constructed to determine the citric acid cycle flux in the case of high aspartate transaminase activity leading to the formation of large amounts of labeled aspartate and glutamate. In this model, the labeling of glutamate and aspartate carbons by chemical and isotopic exchange with the citric acid cycle are considered to be interdependent. With [U-13C]Glc or [1,2-(13)C]acetate as a substrate, all glutamate and aspartate carbons can be labeled. The isotopic transformations of 32 glutamate isotopomers into 16 aspartate isotopomers or vice versa were studied using matrix operations; the results were compiled in two matrices. We showed how the flux constants of the citric acid cycle and the 13C-enrichment of acetyl-CoA can be deduced from 13C-NMR spectra of glutamate and/or aspartate. The citric acid cycle flux in beating Wistar rat hearts, aerobically perfused with [U-13C]glucose in the absence of insulin, was investigated by 13C-NMR spectroscopy. Surprisingly, aspartate instead of glutamate was found to be the most abundantly-labeled metabolite, indicating that aspartate transaminase (which catalyses the reversible reaction: (glutamate + oxaloacetate <--> 2-oxoglutarate + aspartate) is highly active in the absence of insulin. The amount of aspartate was about two times larger than glutamate. The quantities of glutamate (G0) or aspartate (A0) were approximately the same for all hearts and remained constant during perfusion: G0 = (0.74 +/- 0.03) micromol/g; A0 = (1.49 +/- 0.05) micromol/g. The flux constants, i.e., the fraction of glutamate and aspartate in exchange with the citric acid cycle, were about 1.45 min(-1) and 0.72 min(-1), respectively; the flux of this cycle is about (1.07 +/- 0.02) micromol min(-1) g(-1). Excellent agreement between the computed and experimental data was obtained, showing that: i) in the absence of insulin, only 41% of acetyl-CoA is formed from glucose while the rest is derived from endogenous substrates; and ii) the exchange between aspartate and oxaloacetate or between glutamate and 2-oxoglutarate is fast in comparison with the biological transformation of intermediate compounds by the citric acid cycle.  相似文献   

8.
Up to 88% of a single dose of methyl[14C]methacrylate in rats is expired as 14CO2 in 10 days (65% in 2 h), irrespective of the route of administration and of the specific labelling of the propylene residue of the molecule. The implications of this observation, and of the excretion of small amounts of [14C]methylmalonate, [14C]-succinate and probably of [14C]beta-hydroxyisobutyrate and 2-formylpropionate, and of the formation of [14C] normal, physiological metabolites that may be accounted for by anabolism both from 14CO2 and from [14C]acetate emergent from the citric acid cycle, are that the metabolic pathway concerned involves intermediary metabolism and relates to mitochondrial function. Present findings are discussed in relation to the imputations of a report of carcinogenic risk.  相似文献   

9.
Isopentenyl diphosphate (IPP), which is produced from mevalonic acid or other nonmevalonic substrates, is the universal precursor of isoprenoids in nature. Despite the presence of several isoprenoid compounds in plastids, enzymes of the mevalonate pathway leading to IPP formation have never been isolated or identified to our knowledge. We now describe the characterization of two pepper (Capsicum annuum L.) cDNAs, CapTKT1 and CapTKT2, that encode transketolases having distinct and dedicated specificities. CapTKT1 is primarily involved in plastidial pentose phosphate and glycolytic cycle integration, whereas CapTKT2 initiates the synthesis of isoprenoids in plastids via the nonmevalonic acid pathway. From pyruvate and glyceraldehyde-3-phosphate, CapTKT2 catalyzes the formation of 1-deoxy-xylulose-5-phosphate, the IPP precursor. CapTKT1 is almost constitutively expressed during the chloroplast-to-chromoplast transition, whereas CapTKT2 is overexpressed during this period, probably to furnish the IPP necessary for increased carotenoid biosynthesis. Because deoxy-xylulose phosphate is shared by the plastid pathways of isoprenoid, thiamine (vitamin B1), and pyridoxine (vitamin B6) biosynthesis, our results may explain why albino phenotypes usually occur in thiamine-deficient plants.  相似文献   

10.
A mathematical model of mammalian cell intermediary metabolism is presented. It describes the distribution of the carbon-13 isotope (13C) at the different carbon positions of metabolites in cells fed with 13C-enriched substrates. The model allows the determination of fluxes through different metabolic pathways from 13C- and 1H-NMR spectroscopy and mass spectrometry data. The considered metabolic network includes glycolysis, gluconeogenesis, the citric acid cycle and a number of reactions corresponding to protein or fatty acid metabolism. The model was used for calculating metabolic fluxes in a rat tumor cell line, the C6 glioma, incubated with [1-13C]glucose. After evolution to metabolic and isotopic steady states, the intracellular metabolites were extracted with perchloric acid. The specific enrichments of glutamate, aspartate and alanine carbons were determined from 13C-, 1H-NMR spectroscopy, or mass spectrometry data. Taking into account the rate of glucose consumption and of lactate formation, determined from the evolution of glucose and lactate contents in the cell medium, and knowing the activity of the hexose monophosphate shunt, it was possible to estimate the absolute values of all the considered fluxes. From the analysis the following results were obtained. (a) Glucose accounts for about 78% of the pyruvate and 57% of the CoASAc. (b) A metabolic channelling occurs at the citric acid cycle level; it favours the conversion of carbons 2, 3, 4, and 5 of 2-oxoglutarate into carbons 1, 2, 3, and 4 of oxaloacetate, respectively. The percentage of channelled metabolites amounts to 39%. (c) The pyruvate carboxylase activity and the efflux from the citric acid cycle are estimated to be very low, suggesting a lack of glutamine production in C6 cells. The results emphasize different metabolic characteristics of C6 cells when compared to astrocytes, their normal counterpart.  相似文献   

11.
This paper reviews current knowledge regarding the metabolism of the sulphur-containing amino acids methionine and cysteine in parasitic protozoa and helminths. Particular emphasis is placed on the unusual aspects of parasite biochemistry which may present targets for rational design of antiparasite drugs. In general, the basic pathways of sulphur amino acid metabolism in most parasites resemble those of their mammalian hosts, since the enzymes involved in (a) the methionine cycle and S-adenosylmethionine metabolism, (b) the trans-sulphuration sequence, (c) the transminative catabolism of methionine, (d) the oxidative catabolism of cysteine and (e) glutathione synthesis have been demonstrated variously in several helminth and protozoan species. Despite these common pathways, there also exist numerous differences between parasite and mammalian metabolism. Some of these differences are relatively subtle. For example, the biochemical properties (and primary amino acid structures) of certain parasite methionine cycle enzymes and S-adenosylmethionine decarboxylases differ from those of the corresponding mammalian enzymes, and nematodes and trichomonads possess a novel, non-mammalian form of the trans-sulphuration enzyme cystathionine beta-synthase. The most profound differences between parasite and mammalian biochemistry relate to a number of unusual enzymes and thiol metabolites found in parasitic protozoa. In certain protozoa the pathway for methionine recycling from 5'-methylthioadenosine differs markedly from the mammalian route, and involves 2 exclusively microbial enzymes. Trypanosomatid protozoa contain the non-mammalian antioxidant thiol compounds ovothiol A and trypanothione, together with unique trypanothione-linked enzymes. Specific anaerobic protozoa possess another exclusively microbial enzyme, methionine gamma-lyase, which catabolises methionine (and homocysteine); the physiological significance of these non-mammalian activities is not fully understood. These unusual features offer opportunities for chemotherapeutic exploitation, and in some cases represent metabolic similarities with bacteria. Additionally, some anaerobic protozoa contain unidentified thiols and this implies the presence of further unusual enzymes/pathways in these organisms. So far, no truly unique targets for chemotherapy have been found in helminth sulphur amino acid metabolism, and to some degree this reflects the relative lack of detailed study in the area.  相似文献   

12.
Pancreatic islets were cultured for 24 h in the presence of 1 mM glucose, which renders islets incapable of responding to glucose with insulin release. These islets were compared to islets maintained at 20 mM glucose for 24 h. Detritiation of [2-3H]glucose and [5-3H]glucose in 1 mM glucose islets was normal, suggesting that glucose transport and phosphorylation and all enzymes of glycolysis were not down-regulated in the incapacitated islets. 14CO2 formation from [U-14C]glucose and [6-14C]glucose was inhibited up to 80% and 14CO2 from methyl succinate was inhibited up to 60%, indicating that down-regulation at (a) mitochondrial site(s) might explain the incapacitated insulin release. 14CO2 formation from [3,4-14C]glucose (which becomes [1-14C]pyruvate) was decreased, indicating that the reaction catalyzed by pyruvate dehydrogenase was down-regulated. This decrease, however, was not as large as the decreases in 14CO2 formation from [U-14C]glucose, [2-14C]glucose (which becomes [2-14C]pyruvate), or [6-14C]glucose (which becomes [3-14C]pyruvate), indicating that other reactions were also down-regulated. 14CO2 formation from [1-14C]glucose was inhibited less than that from [6-14C]glucose in the incapacitated islets (34 vs 54%) and these rates indicated that flux of glucose through the pentose phosphate pathway was increased in the incapacitated islet, such that 29% (0.4 nmol of 1.4 glucose/100 islets/90 min) was metabolized via this pathway in the incapacitated islet but only 3.4% (0.1 of 2.9 nmol glucose/100 islets/90 min) was metabolized via the pentose pathway in the 20 mM glucose islets. With rates of 14CO2 evolved from glucose labeled at C2 and C6 and from methyl succinate labeled at C1 + C4 and C2 + C3 the 14CO2 ratio formula was used to calculate the ratios of carboxylated and decarboxylated pyruvate. Roughly equal amounts of pyruvate entered the citric acid cycle by each route in islets maintained for 24 h at 1, 5, or 20 mM glucose. The results indicate that decarboxylation and carboxylation of pyruvate were about equally suppressed in incapacitated islets and that direct inhibition of reactions of the cycle was unlikely. This is consistent with evidence which indicates that down-regulation of both pyruvate carboxylase and pyruvate dehydrogenase occurs in incapacitated islets, i.e., under long-term conditions that modify amounts of enzymes (MacDonald et al., 1991, J. Biol. Chem. 266, 22392-22397).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
BACKGROUND & AIMS: Cholesterol degradation to bile acids occurs via "classic" or "alternative" bile acid biosynthetic pathways. The aim of this study was to assess the contributions of these two pathways to total bile acid synthesis in vivo. METHODS: Rats with biliary fistulas were infused with squalestatin for 24 and 48 hours; specific activities of cholesterol 7 alpha-hydroxylase (C7 alpha H) and sterol 27-hydroxylase (S27H) and rates of bile acid synthesis were determined. RESULTS: Continuous squalestatin infusion (15 micrograms/h) decreased C7 alpha H specific activities to 4% and 12% of paired biliary fistula controls at 24 and 48 hours, respectively (P < 0.05) without any changes in S27H specific activities (82% and 95% of controls). At 24 hours, bile acid synthesis decreased to 43% (P < 0.05) but returned to 87% at 48 hours (P = NS). Cholic acid synthesis decreased at 24 hours but returned to control levels at 48 hours. Similar changes in C7 alpha H, S27H, and bile acid synthesis were observed in primary rat hepatocytes after addition of squalestatin (1.0 mumol/L). CONCLUSIONS: In the face of persistent suppression of C7 alpha H and the classic pathway, an alternative pathway becomes a main pathway of bile acid synthesis capable of generating cholic and chenodeoxycholic acids. The observed induction of bile acid synthesis via an alternative pathway or pathways represents an important mechanism for maintenance of cholesterol homeostasis in the rat.  相似文献   

14.
BACKGROUND: The ultimate acceptance of a fully automatic atrial defibrillator will depend on the reduction of pain to acceptable levels, requiring a marked decrease in defibrillation thresholds. The purpose of this study was to determine whether atrial defibrillation thresholds can be reduced by sequential shocks delivered through two current pathways. METHODS AND RESULTS: Sustained atrial fibrillation was induced with rapid atrial pacing in 12 adult sheep. Defibrillation electrodes were positioned in the right atrial appendage (RAap), distal coronary sinus (DCS), proximal coronary sinus (CSos), main/left pulmonary artery junction (PA), and right ventricular apex (RV). Single-capacitor biphasic waveforms (3/1 ms) were delivered through combinations of these electrodes. Probability-of-success curves were determined for single shocks with a single current pathway and sequential shocks with either single- or dual current pathways. The ED50 for delivered energy for the dual current pathway RAap to DCS then CSos to PA was 0.36+/-0.13 J, which was significantly lower than the ED50 of the standard single current pathway RAap to DCS (1.31+/-0.3 J) and was significantly lower than all other configurations tested. CONCLUSIONS: Internal atrial defibrillation thresholds can be markedly reduced with two sequential biphasic shocks delivered over two current pathways compared with the standard single shock delivered over a single current pathway or with sequential shocks delivered over a single current pathway.  相似文献   

15.
Anti-washout-type fast-setting calcium phosphate cement using chitosan (aw-FSCPC(chi)), conventional CPC (c-CPC), CPC mixed with citric acid (CPC(citric)) and CPC mixed with polyacrylic acid (CPC(acrylic)) were implanted subcutaneously in rats immediately after mixing to shed some light on the understanding of the appearance of excellent tissue response to CPC. CPC(citric) and CPC(acrylic) set quickly, similar to aw-FSCPC(chi), but the former two stopped their transformation to apatitic minerals. The c-CPC, which required a long setting time, was found to be crumbled, but the other CPCs maintained the shape at implantation. The aw-FSCPC(chi) and CPC(citric) showed no inflammatory response whereas c-CPC and CPC(acrylic) showed an inflammatory response one week after implantation. A component of the aw-FSCPC(chi) and c-CPC was an apatitic mineral whereas CPC(citric) and CPC(acrylic) showed no transformation to apatite. We concluded that the non-crumbling property plays a more dominant role in the appearance of excellent tissue response to CPC than the transformation to apatite. Also, a non-crumbling property is not a sufficient condition, but a necessary condition for the appearance of the excellent tissue response to CPC.  相似文献   

16.
Bacterial biosynthesis of indole-3-acetic acid   总被引:1,自引:0,他引:1  
Production of the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit the rhizosphere of plants. Several different IAA biosynthesis pathways are used by these bacteria, with a single bacterial strain sometimes containing more than one pathway. The level of expression of IAA depends on the biosynthesis pathway; the location of the genes involved, either on chromosomal or plasmid DNA, and their regulatory sequences; and the presence of enzymes that can convert active, free IAA into an inactive, conjugated form. The role of bacterial IAA in the stimulation of plant growth and phytopathogenesis is considered.  相似文献   

17.
Saccharomyces cerevisiae accumulates L-malic acid through a cytosolic pathway starting from pyruvic acid and involving the enzymes pyruvate carboxylase and malate dehydrogenase. In the present study, the role of malate dehydrogenase in the cytosolic pathway was studied. Overexpression of cytosolic malate dehydrogenase (MDH2) under either the strong inducible GAL10 or the constitutive PGK promoter causes a 6- to 16-fold increase in cytosolic MDH activity in growth and production media and up to 3.7-fold increase in L-malic acid accumulation in the production medium. The high apparent Km of MDH2 for L-malic acid (11.8 mM) indicates a low affinity of the enzyme for this acid, which is consistent with the cytosolic function in the enzyme and differs from the previously published Km of the mitochondrial enzyme (MDH1, 0.28 mM). Under conditions of MDH2 overexpression, pyruvate carboxylase appears to be a limiting factor, thus providing a system for further metabolic engineering of L-malic acid production. The overexpression of MDH2 activity also causes an evaluation in the accumulation of fumaric acid and citric acid. Accumulation of fumaric acid is presumably caused by high intracellular L-malic acid concentrations and the activity of the cytosolic fumarase. The accumulation of citric acid may suggest the intriguing possibility that cytosolic L-malic acid is a direct precursor of citric acid in yeast.  相似文献   

18.
Bacteria have evolved several secretory pathways to release proteins into the extracellular medium. In Gram-negative bacteria, the exoproteins cross a cell envelope composed of two successive hydrophobic barriers, the cytoplasmic and outer membranes. In some cases, the protein is translocated in a single step across the cell envelope, directly from the cytoplasm to the extracellular medium. In other cases, outer membrane translocation involves an extension of the signal peptide-dependent pathway for translocation across the cytoplasmic membrane via the Sec machinery. By analogy with the so-called general export pathway (GEP), this latter route, including two separate steps across the inner and the outer membrane, was designated as the general secretory pathway (GSP) and is widely conserved among Gram-negative bacteria. In their great majority, exoproteins use the main terminal branch (MTB) of the GSP, namely the Xcp machinery in Pseudomonas aeruginosa, to reach the extracellular medium. In this review, we will use the P. aeruginosa Xcp system as a basis to discuss multiple aspects of the GSP mechanism, including machinery assembly, exoprotein recognition, energy requirement and pore formation for driving through the outer membrane.  相似文献   

19.
The study aimed to further demonstrate the peripheral antitussive properties of moguisteine. Firstly, the antitussive effect of moguisteine on the cough reflex induced by inhalation of citric acid aerosol was evaluated in conscious guinea pigs. Secondly, the effects of both moguisteine and codeine on the centrally mediated cough reflex induced by afferent electrical stimulation of the superior laryngeal nerve were investigated in anesthetized guinea pigs. Moguisteine (2.5-10 mg/kg, intravenously, i.v.) reduced the cough reflex induced by 7.5% citric acid aerosol in a dose-dependent manner, with an ED50 value of 0.55 mg/kg. Both i.v. (0.5-4 mg/kg) and intracerebroventricular (i.c.v., 5-20 microg) injection of codeine dose dependently inhibited the cough reflex induced by afferent electrical stimulation of the superior laryngeal nerve; the ED50 values were 0.91 mg/kg and 7.90 microg, respectively. The inhibitory effect of codeine (4 mg/kg i.v.) was abolished by pretreatment with naloxone (2 mg/kg intraperitoneally). In contrast to codeine, neither i.v. (4 and 20 mg/kg) nor i.c.v. (20 microg) injection of moguisteine affected the cough reflex. These results suggest that the antitussive effect of codeine is mediated by central opioid mechanisms, whereas the antitussive effect of moguisteine is mediated by peripheral mechanisms.  相似文献   

20.
Twenty strains of Streptococcus bovis grew more slowly on lactose (1.21 +/- 0.12 h-1) then than on glucose (1.67 +/- 0.12 h-1), and repeated transfers or prolonged growth in continuous culture (more than 200 generations each) did not enhance the growth rate on lactose. Lactose transport activity was poorly correlated with growth rate, and slow growth could not be explained by the ATP production rate (catabolic rate). Batch cultures growing on lactose always had less intracellular fructose 1,6-bisphosphate (Frul,6P2) than cells growing on glucose (6.6 mM compared to 16.7 mM), and this difference could be explained by the pathway of carbon metabolism. Glucose and the glucose moiety of lactose were metabolized by the Embden-Meyerhoff-Parnas (EMP) pathway, but the galactose moiety of lactose was catabolized by the tagatose pathway, a scheme that by-passed Frul,6P2. A mutant capable of co-metabolizing lactose and glucose grew more rapidly when glucose was added, even though the total rate of hexose fermentation did not change. Wild-type S. bovis grew rapidly with galactose and melibiose, but these galactose-containing sugars were activated by galactokinase and catabolized via EMP. On the basis of these results, rapid glycolytic flux through the EMP pathway is needed for the rapid growth (more than 1.2 h-1) of S. bovis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号