首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 706 毫秒
1.
以聚磷酸铵(APP)复配季戊四醇(PER)为膨胀型阻燃剂(IFR)制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/IFR复合材料,通过极限氧指数仪、热失重分析仪及扫描电子显微镜研究分析了4A分子筛和SiO2的加入对复合材料阻燃性能、热稳定性能及复合材料残炭表面形貌的影响。结果表明,加入4A分子筛可以明显提高复合材料的极限氧指数,当添加1份4A分子筛时,复合材料的极限氧指数达到31%,比未添加时提高了2%;4A分子筛的加入使复合材料在燃烧过程出现熔融滴落现象;继续加入SiO2可以进一步提高复合材料的极限氧指数,当添加3份SiO2时,复合材料的垂直燃烧测试达到V-0级。  相似文献   

2.
张文龙  胡德帅  李春雨  马英一  戴亚杰 《塑料》2020,49(4):91-94,98
研究了三聚氰胺焦磷酸盐(MPP)/季戊四醇(PER)膨胀型阻燃体系,对热塑性聚氨酯弹性体(TPU)/乙烯-醋酸乙烯共聚物(EVA)复合材料阻燃、介电、力学性能及微观形貌的影响。结果表明,随着MPP在MPP/PER中的质量比增大,复合材料的阻燃性能呈先提升,后变差的趋势,击穿场强、体积电阻率、拉伸强度以及断裂伸长率呈先增大,后减小的趋势;当MPP/PER质量比为3/2时,复合材料的性能最佳,此时,复合材料的燃烧等级为V-0级且无滴落,燃烧后的炭层结构致密,氧指数为33%,击穿场强为21.9 MV/m,体积电阻率为5.521×10~8Ω·m,拉伸强度为5.61 MPa,断裂伸长率为513.21%,热稳定性得到提高。为研究TPU/EVA阻燃复合材料打下坚实的理论和实践基础。  相似文献   

3.
为优化聚磷酸铵(APP)的阻燃效率,提高环氧树脂材料的阻燃性能,选取离子液体1-丁基-3-甲基咪唑磷酸二丁酯([Bmim][DBP])为增效剂制备复配型阻燃剂。采用热重分析研究了复配型阻燃剂及其改性的环氧复合材料的热解性能,采用极限氧指数和水平垂直燃烧试验考察了复合材料的阻燃性能。结果表明,[Bmim][DBP]添加质量分数为10%时,APP的热稳定性降低,但残炭率提高,适量的[Bmim][DBP]提高了APP的阻燃效率。复配型阻燃剂添加质量分数10%的环氧复合材料的极限氧指数达到30.0以上,复合材料的热稳定性降低,但成炭性能提高,表明APP与[Bmim][DBP]之间存在协同作用。  相似文献   

4.
无卤阻燃ABS/TPU复合材料阻燃性能的研究   总被引:2,自引:1,他引:1  
采用了微胶囊红磷(MRP)、氢氧化镁(MH)、聚硅氧烷组成复合阻燃剂,对丙烯腈-丁二烯-苯乙烯(ABS)/热塑性聚氨酯(TPU)合金进行改性,获得了环保型阻燃ABS/TPU复合材料。对该复合材料进行了阻燃性能、热稳定性测试和炭层形貌分析。结果表明,当复合阻燃剂MRP/MH质量比为1/1且添加量为16份时,复合材料的极限氧指数(LOI)为25.7%,垂直燃烧性能通过FV-0级;TPU结构中因含氧,有利于MRP/MH阻燃体系阻燃;添加6份聚硅氧烷,复合材料垂直燃烧级别达到FV-0级,聚硅氧烷燃烧过程中通过改变炭层形貌,提高阻燃性。  相似文献   

5.
采用聚对苯二甲酸丁二醇酯(PBT)作为基体树脂、二乙基次磷酸铝(AlPi)和三聚氰胺次磷酸盐(MPP)以质量比2∶1的配比作为协效阻燃剂、炭黑(CB)作为抗静电填料,制备了阻燃抗静电PBT材料。通过极限氧指数、UL 94垂直燃烧实验、热重分析和扫描电子显微镜分别研究了PBT复合材料的燃烧性能、热稳定性、抗静电性能并测试了其体积电阻率。结果表明,复合材料的阻燃级别达到UL 94 V-0级,极限氧指数为31 %;CB的阈值为12份(质量份,下同),CB加入量为20份时的体积电阻率达到104 Ω·cm;复配阻燃剂和CB对材料的热稳定性有一定程度的改善,复合材料燃烧后表面形成多孔连续的炭层,获得了优良的阻燃效果。  相似文献   

6.
以DOPO为阻燃剂,短切碳纤维为增强体,环氧树脂为基体,制备了不同DOPO含量的DOPO/碳纤维/环氧树脂复合材料。采用极限氧指数测定法、锥形量热法和UL-94垂直水平燃烧测试法,分析了复合材料的燃烧特性以及DOPO添加量对复合材料阻燃性能的影响。研究结果表明:DOPO可以提高碳纤维环氧复合材料的阻燃性能;添加磷(P)含量为3%时,与未添加样品相比,极限氧指数提高了9%,达到21.8,热释放速率峰值降低了31.2%;当P含量大于2%时,样品的水平分级达到了FH-1级别;火焰增长指数计算表明,含有1%和3%P的复合材料火灾危险性较小,DOPO对复合材料的阻燃作用主要属于气相阻燃机理。  相似文献   

7.
用熔融共混法制备了长玻纤增强聚丙烯/膨胀阻燃剂/多壁碳纳米管(LGFPP/IFR/MWNT)复合材料。通过极限氧指数、垂直燃烧测试、热失重分析、力学性能测试等手段研究了MWNT对LGFPP/IFR的阻燃性能、热性能和力学性能的影响。结果表明,MWNT的加入提高了LGFPP/IFR阻燃体系的阻燃性能,在LGFPP/IFR阻燃体系中添加1%MWNT后,LGFPP/IFR/MWNT复合材料的氧指数提高到23.5%;MWNT可显著增加LGFPP/IFR的热稳定性,添加1%MWNT可使LGFPP/IFR热分解起始温度提高12.34℃;MWNT的加入还提高了LGFPP/IFR阻燃体系的力学性能,在LGFPP/IFR阻燃体系中添加1%MWNT后,LGFPP/IFR/MWNT复合材料的拉伸强度、弯曲强度和冲击韧性分别提高了5.7%、12.7%和1.0%。  相似文献   

8.
徐淳  蔡绪福 《塑料工业》2014,42(9):92-95
以聚磷酸铵(APP)和聚对苯二甲酰乙二胺(PETA)复配制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)/膨胀型阻燃体系(IFR)复合材料,通过极限氧指数仪、热失重分析仪(TG)和扫描电镜(SEM)分析了4A分子筛对复合材料的阻燃性能、热稳定性能和复合材料残炭表面形貌的影响。结果表明,当4A分子筛添加量为2%时,复合材料的极限氧指数达39%,比未添加4A分子筛的提高了4%,垂直燃烧达到V-0级。SEM表明,4A分子筛的加入提高了样品残炭表面致密度。  相似文献   

9.
利用无卤膨胀阻燃剂(IFR)阻燃长玻纤增强聚丙烯(LGFPP)复合材料,研究IFR的添加量对复合材料阻燃性能、热稳定性能、燃烧性能和力学性能的影响。结果表明,加入IFR使复合材料燃烧后生成了具有阻燃作用的炭层,显著提高了复合材料的阻燃性能。随IFR添加量的增加,复合材料的极限氧指数(LOI)逐渐提高,热释放速率峰值及其平均值、总热释放速率和生烟速率逐渐降低,力学性能略有下降。当IFR质量分数为20%时,复合材料的LOI和垂直燃烧等级分别达到了24.4%和UL 94 V-0级。  相似文献   

10.
采用共沉淀法合成了ZnAl-LDHs,并以油酸钠为表面改性剂,对其进行湿法表面改性制备油酸钠改性的ZnAl-LDHs(O-ZnAl-LDHs)。通过X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、扫描电镜(FESEM)及热重分析(TG)对改性前后的ZnAl-LDHs进行了表征。将改性前后的ZnAl-LDHs分别添加至ABS中,制备ZnAl-LDHs/ABS复合材料,通过阻燃和力学性能测试考察了改性前后ZnAl-LDHs的添加量对复合材料性能的影响。结果表明:当添加量为10%~50%时,改性前后的ZnAl-LDHs均能使ABS复合材料极限氧指数(LOI)提高,当添加量为40%时,改性后的ZnAl-LDHs氧指数较未改性的ZnAl-LDHs有着明显提升且满足UL-94垂直燃烧测试的V-1级别要求;当改性后的ZnAl-LDHs添加量为50%时,LOI可达28.2%,且满足UL-94垂直燃烧测试的V-0级别要求;而力学性能相对于同等添加量下未改性的复合材料均有不同程度的提高。  相似文献   

11.
采用锥形量热仪、极限氧指数测试仪、垂直水平燃烧试验仪及扫描电镜等测试环氧树脂基体及T800碳纤维/环氧复合材料的燃烧特性、表面微观形貌及成炭行为。结果表明:50 kW/m2辐射强度下,相比环氧树脂基体,T800碳纤维/环氧复合材料的点燃时间、达到热释放速率峰值和最大烟释放速率峰值的时间分别延迟51、204、34 s,热释放速率峰值与烟释放速率峰值分别降低76%和59%。T800碳纤维/环氧复合材料的最大极限氧指数可达61.8%、垂直和水平燃烧等级分别为V-0和HB。T800碳纤维/环氧复合材料具有优异的防火性能,依据密集碳纤维束及燃烧后产生的包覆在表面形成炭层,实现双向阻燃及控烟。  相似文献   

12.
张雯  乔辉  丁筠  李艳东 《中国塑料》2015,29(1):19-22
选用一种含有聚磷酸铵的高效膨胀型阻燃剂(SR-50A)与聚丙烯(PP)和不同含量的苯基硅油和钛白粉通过挤出造粒法制备了膨胀型阻燃母粒,将其与PP注塑成阻燃复合材料,利用极限氧指数测试仪等对阻燃复合材料的燃烧性能进行测试。结果表明,复合材料中膨胀型阻燃母粒含量为20 %(质量分数,下同),苯基硅油的添加量为0.17 %时,极限氧指数值提高到35.6 %;钛白粉的添加量为1 %时,极限氧指数值提高到35.1 %,垂直燃烧等级(UL 94)均能达到V-0级;苯基硅油的加入可促进阻燃剂在阻燃初始阶段的分解,降低了复合材料的热分解速率,钛白粉的加入可促进基体成炭。  相似文献   

13.
将膨胀型阻燃剂应用在聚丙烯(PP)中,评价了阻燃体系的阻燃、耐水、绝缘等性能。结果显示:当阻燃剂质量分数为20%时,国产新型磷氮系膨胀型阻燃剂(IFR-A)阻燃PP的极限氧指数比国外高效膨胀型阻燃剂阻燃PP的极限氧指数低,但IFR-A阻燃PP的耐水性能较好;随着阻燃剂含量增加,PP的表面电阻率与体积电阻率都维持在1×1012数量级;当w(IFR-A)为20%时,采用添加阻燃母粒的方式与直接添加IFR-A阻燃PP的燃烧性能和力学性能变化不大。  相似文献   

14.
采用钠基膨润土(Na-MMT)、卤锑复配阻燃剂和低密度聚乙烯(LDPE)树脂制备了阻燃复合材料,研究了改性Na-MMT协同卤锑复配阻燃剂对LDPE阻燃材料的燃烧性能、力学性能及热性能的影响。结果表明:改性Na-MMT替代部分卤锑复配阻燃剂时,其垂直燃烧等级均达到UL94 V-0级,极限氧指数均在32.0%以上。当改性Na-MMT质量分数为8%时,阻燃材料的极限氧指数达到33.8%;当改性Na-MMT质量分数为16%时,阻燃材料的力学性能最优。  相似文献   

15.
杨娟  王启强 《广州化工》2020,48(6):63-65
研究了蒙脱土/聚氨酯复合材料的阻燃性能,分别从蒙脱土种类、插层温度、插层时间、蒙脱土的用量、复合材料密度等因素,考察了其对蒙脱土/聚氨酯复合材料阻燃性能的影响。利用垂直燃烧法观察火焰高度、燃烧时间的差别。结果表明:采用有机改性纳米蒙脱土,插层温度为100℃、插层时间为4 h、蒙脱土用量为40%,制备而成的蒙脱土/聚氨酯复合材料阻燃性能最佳,燃烧时火焰高度最低,燃烧时间为29 s后自熄。  相似文献   

16.
《塑料》2015,(2)
采用熔融共混的方法制备了聚苯乙烯/次磷酸铝(PS/AHP)复合材料。采用热重分析测试研究了复合材料的热稳定性,通过极限氧指数、垂直燃烧和微型量热测试研究了复合材料的阻燃性能。研究表明:次磷酸铝(AHP)有效提高了PS/AHP复合材料的阻燃性能,当次磷酸铝添加量为20%时,复合材料可以达到UL-94 V-0级别,极限氧指数为24.0%;热重分析研究表明次磷酸铝的加入可以延缓聚苯乙烯分子链的降解,提高复合材料高温成炭率;微型量热(MCC)测试表明PS/AHP30与纯PS相比,其热释放速率峰值和总热释放分别下降40.5%和18.9%。  相似文献   

17.
采用熔融共混法制备了膨胀型阻燃剂(IFR)和玻纤(GF)增强改性的聚甲醛复合材料,利用垂直燃烧测试、极限氧指数测试、简支梁摆锤冲击试验机及万能力学测试仪考察了阻燃聚甲醛体系的阻燃性能及力学性能,并采用旋转流变仪测定了复合材料的流变性能。结果表明,质量分数为20%GF的加入使聚甲醛(POM)/IFR复合体系的拉伸强度提升15.8%,弯曲强度提升16.0%,冲击性能提升1倍。与未添加GF的复合体系相比,POM/IFR/GF复合材料表现出更高的动态模量和复数黏度。由于GF"烛芯效应"的作用,GF的加入未实现UL94阻燃等级。通过酚醛树脂对GF进行表面改性(m GF)后,POM/IFR/GF复合体系的极限氧指数(LOI)由22.7%提升至34.6%,力学性能略有提升,体系的模量、复数黏度均低于未改性GF增强体系。  相似文献   

18.
基于阻燃剂ANTI?660及抗静电剂单苷酸甘油酯(Gm)制备了聚丙烯(PP)复合材料,采用水平垂直燃烧测试仪、氧指数测试仪、表面电阻测定仪、万能试验机和摆锤式冲击试验机等研究了阻燃剂和抗静电剂对复合材料阻燃性能、抗静电性能和力学性能的影响。结果表明,在阻燃剂含量为18.0 %(质量分数,下同),抗静电剂含量为2.0 %时,复合材料的极限氧指数(LOI)达到26.0 %,UL 94测试达到V?0级,表面电阻下降到1.7×1012 Ω;添加阻燃抗静电体系的复合材料相比于添加纯阻燃剂的复合材料整体力学性能改变不明显,但仍具有较好的综合力学性能。  相似文献   

19.
将改性天然水镁石分别与改性硅灰石、微囊化红磷添加到聚丙烯中,制得两种复合材料,对这两种复合材料进行冲击试验、差热分析、氧指数和垂直燃烧性能测试分析,考察了两种复合材料的力学性能和阻燃性能。实验结果表明,天然水镁石微囊化红磷复配阻燃聚丙烯体系较天然水镁石硅灰石复配阻燃聚丙烯体系阻燃性能更好同时力学性能损失较小。  相似文献   

20.
以二乙基亚膦酸铝盐(AlPi)和三聚氰胺氰脲酸盐(MCA)为阻燃剂,添加到热塑性聚酯弹性体(TPEE)中,采用挤出造粒方法制备出高性价比的阻燃TPEE复合材料。首先采用热失重分析仪研究了两种阻燃剂的热稳定性,进一步采用热失重分析、极限氧指数测试、垂直燃烧测试、力学性能测试以及扫描电子显微镜等对阻燃TPEE材料的热稳定性、阻燃性能、燃烧性能、力学性能以及复合材料的微观形貌进行了研究。结果表明,在相同阻燃剂用量下,添加AlPi的阻燃复合材料的阻燃效果、力学性能均优于添加MCA的阻燃复合材料,采用AlPi与MCA复配使用制备的阻燃TPEE复合材料的阻燃效果、力学性能介于二者之间,当TPEE,AlPi和MCA用量分别为83%,10%和5%时,阻燃复合材料的拉伸强度为24.19 MPa,断裂伸长率为515%,极限氧指数为30%,垂直燃烧测试达到V–0级。AlPi与MCA复配使用可提升阻燃TPEE材料的成炭性能和高温热稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号