首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用常规资料、自动站雨量资料、卫星云图及雷达资料,对2009年5月9-10日发生在鲁西北和鲁中北部的一次区域性大暴雨进行分析。分析发现,低层冷式切变线是引发大暴雨的主要系统,暴雨主要产生在低空冷式切变线右侧、西南低涡的东北象限以及低空急流的左前方,也是高低空急流耦合区。副高西侧的西南急流建立起从南海到华北中部的水汽通道,为大暴雨的发生发展提供暖湿空气和能量,使得低涡辐合加强,是低层切变线长时间停滞的必要条件。地面锋面气旋则是暴雨开始的启动机制,锋后东北冷空气与西南暖湿空气在山东上空交汇,促使对流发展和不稳定能量释放产生暴雨。在低层辐合、高层弱辐散的情况下,暴雨区低涡的涡动作用使得水汽块运动加强。多个对流单体合并形成的中尺度对流系统(MCS)经过大暴雨区,雷达回波表现为层状云为主的混合回波带,说明对流并不旺盛。  相似文献   

2.
Influenced by strong winds associated with a southeastward-moving Mongolian cyclone, a severe transmission line galloping occurred in Baiyin City, Gansu Province, on 14 April 2020. This caused a tripping incident of the transmission line in this region. Based on the hourly, 0.5°  ×  0.5°, ECMWF ERA5 reanalysis data, this study investigated the formation mechanisms of the Mongolian cyclone and its associated strong winds. Results from the vorticity budget indicate that the convergence-related vertical stretching and the upward transport of cyclonic vorticity governed formation of the Mongolian cyclone in this event; whereas, tilting and export of cyclonic vorticity from the central region of the cyclone mainly decelerated the cyclone's formation. The kinetic energy (KE) budget shows that the wind associated with the Mongolian cyclone was mainly enhanced by the positive work of the pressure gradient force. Unlike some typical strong wind events in Northwest China, during this event, no significant downward momentum transportation from the upper troposphere was found. The vertical transport of KE exerted a slightly favorable effect on the KE increase around the location where the transmission line galloping trip appeared. In contrast, the horizontal transport mainly caused an export of KE from this region, which applied an overall negative effect on the wind enhancement associated with the Mongolian cyclone.摘要受一次向东南方向移动蒙古气旋强风的影响, 2020年4月18日甘肃省白银市的高压输电线路出现了严重的舞动, 这造成了该地区的输电线路跳闸事故.基于0.5度逐小时分辨率的ERA5再分析数据, 本文研究了这次蒙古气旋及其强风的形成机理.涡度收支的结果表明, 辐合相关的垂直伸展以及垂直运动向上的正涡度输送是本次蒙古气旋形成的主因, 而倾斜项的负涡度制造以及从气旋中心区域向外的正涡度输送在一定程度上不利于蒙古气旋的形成.动能收支的结果表明, 蒙古气旋所伴随的风场主要由于气压梯度力的做功而迅速增强.与我国西北部其它的典型强风事件不同的是在本次事件中, 未发现显著的来自于对流层高层的动量下传现象, 垂直的动能输送在本次事件中仅对强风的形成有些许的促进作用.此外, 水平风场对动能的输送作用使得蒙古气旋大风区的动能存在向外的净输出, 这对蒙古气旋强风的生成有一定的延缓作用.  相似文献   

3.
Intense and extensive dust, caused by a strong Mongolian cyclone, hit Mongolia and northern China on 14–15 March 2021. In this study, the development process of this cyclone is analysed from the perspective of high-frequency eddy energetics. During the low-frequency circulation field of early March of 2021, an amplified polar vortex intruding towards central Asia and a ridge straddling eastern and northeastern Asia worked in concert to comprise a strong baroclinic zone from central Asia to Lake Baikal. Under these favourable conditions, on 13 March, a migratory trough triggered the Mongolian cyclone by crossing over the Sayan Mountains. The downwards transfer of kinetic energy from the eddy at 850 hPa played a key role in the intensification and mature stage of the cyclone. This mechanism was primarily completed by the cold air sinking behind the cold front. The frontal cyclone wave mechanism became crucial once the cyclone started to rapidly develop. The authors emphasize that the anomalously large growth of high-frequency available potential energy, which characterized this super strong cyclone, was obtained by extracting energy first from the time-mean available potential energy and then from the low-frequency available potential energy. The interannual temperature anomaly pattern of “north cold south warm” facilitated the additional time-mean available potential energy, and the temperature anomaly pattern of “northwest cold southeast warm” conditioned the extra low-frequency available potential energy. The analysis results suggest that the interaction between high- and low-frequency waves was also important in the development of the intense cyclone.摘要2021年3月14-15日, 强蒙古气旋引起的大范围强沙尘天气袭击了蒙古国和中国北方地区. 本文从高频涡动能量学的角度分析了这一超强气旋的发展过程. 2021年3月初, 加强的极涡向中亚伸入, 并与横跨东亚和东北亚的一个大型脊协同作用, 由此形成了从中亚到贝加尔湖地区的强大斜压带. 在这一有利的低频环流条件下, 3月13日一个移动性小槽越过萨彦岭后触发了蒙古气旋. 850 hPa涡旋动能的下传在气旋的加强和成熟阶段起到了关键作用. 而这一机制主要由冷锋后侧的冷空气下沉过程完成. 一旦气旋开始快速发展, 锋面气旋波机制就变得至关重要.我们强调, 高频涡动有效位能是首先从时间平均有效势能中提取能量, 然后从低频有效位能中汲取能量而剧烈增长的, 这正是该超强气旋的鲜明特征. “北冷南暖”的近地面温度气候异常型为时间平均有效位能的增多和向高频涡动有效位能的转换提供了条件, 而“西北冷东南暖”的温度异常型则有利于低频有效位能的增加和向高频涡动有效位能的转换. 分析结果表明, 高低频波之间的相互作用对蒙古气旋的增强也很重要.  相似文献   

4.
Using model simulated data, the distribution characteristics, genesis, and impacts on precipitation of available potential energy (APE) are analyzed for a heavy rainfall event that took place over the eastern Tibetan Plateau during 10–11 July 2018. Results show that APE was mainly distributed below 4 km and within 8–14 km. The APE distribution in the upper level had a better correspondence with precipitation. Northwestern cold advection and evaporation of falling raindrops were primary factors leading to positive anomalies of APE in the lower level, while positive anomalies of APE in the upper level were caused by a combination of thermal disturbances driven by latent heat and potential temperature perturbations resulting from the orography of the Tibetan Plateau. Budget analysis of APE indicated that APE fluxes and conversion between APE and kinetic energy (KE) were the main source and sink terms. Meridional fluxes of APE and conversion of KE to APE fed the dissipation of APE in the lower level. Vertical motion enhanced by conversion of APE to KE in the upper level was the major factor that promoted precipitation evolution. A positive feedback between APE and vertical motion in the upper level generated a powerful correlation between them. Conversion of KE to APE lasted longer in the lower level, which weakened vertical motion; whereas, northwestern cold advection brought an enhanced trend to the APE, resulting in a weak correlation between APE and vertical motion.摘要针对2018年7月10-11日青藏高原东部一次暴雨过程, 利用模式模拟资料分析了有效位能分布特征,成因及其对降水发展演变的影响.结果表明, 有效位能主要分布在对流层低层4km以下和高层8-14km, 高层有效位能和降水有更好的对应性西北冷平流和降水粒子下落的蒸发作用是低层有效位能高值中心的主要成因, 而降水过程释放潜热带来的热力扰动叠加高原大地形造成的位温扰动是导致高层有效位能高值的主要原因.有效位能收支分析表明, 有效位能的通量输送项以及与动能间的转换项是主要源汇项.低层有效位能的经向通量输送和动能向有效位能的转化补给了有效位能的耗散;高层有效位能向垂直动能转化增强垂直运动是促进降水发展演变的主要因素.高层有效位能与垂直运动之间的正反馈过程使得两者相关性较强;低层较长时间内均存在垂直动能向有效位能的转化, 削弱了垂直运动, 而西北冷平流使得低层有效位能有增强的趋势, 因此二者相关性较弱.  相似文献   

5.
The mei-yu season (June–July) rainfall over the mei-yu monitoring domain (MMD) in the Yangtze–Huaihe Basin has shown an increasing trend in recent decades. This study examines the dominant factors responsible for this increasing trend for the period 1979–2020 based on station-observed rainfall and ERA5 reanalysis datasets from the perspective of changes in atmospheric circulation. Although significantly increasing trends exist in the mei-yu season rainfall over the entire MMD, the magnitude of the trends is slightly larger over the eastern MMD (EMMD) than over the western MMD (WMMD). Quantitative diagnoses demonstrate that the relative contributions of anomalous evaporation and moisture advection to the increasing rainfall trend are different between the EMMD and WMMD. The increasing rainfall trend over the WMMD (EMMD) is attributable to increased evaporation (enhanced vertical moisture advection), which is dependent on an anomalous cyclonic circulation in the middle-lower troposphere over the MMD. Such an anomalous cyclone on the northwestern side of the climatological western North Pacific subtropical high facilitates an increase in moisture divergence above 600 hPa over the EMMD, leading to enhanced vertical moisture advection in conjunction with strengthened moisture convergence at 850 hPa. By contrast, the anomalous cyclone favors increasing local evaporation over the WMMD.摘要近几十年来, 江淮流域梅雨监测区 (MMD) 的梅雨期 (6–7月) 降水呈增加趋势. 本文基于1979–2020年台站观测降水资料和ERA5再分析数据, 从大气环流变异的角度揭示了这种长期增加趋势的主要影响因素. 发现在MMD范围内, 梅雨期降水趋势的增幅东部大于西部. 水汽收支定量诊断表明, 异常的蒸发和水汽平流对MMD西部和东部降水增加趋势的相对贡献是不同的. MMD西部 (东部) 的降水趋势主要归咎于增强的局地蒸发 (增强的垂直水汽平流) , 后者又取决于MMD对流层中, 低层的异常气旋环流. 这种位于气候平均的西太平洋副热带高压西北侧的异常气旋有助于MMD东部600 hPa以上的水汽辐散增加, 伴随加强的850 hPa水汽辐合, 从而导致垂直水汽平流的增强. 相反, 该异常气旋则有利于增强MMD西部的局地蒸发.  相似文献   

6.
利用常规观测资料以及中尺度数值模式的模拟结果,对2009年8月17—18日山东南部罕见暴雨天气过程成因进行了分析。结果表明:暴雨是受副热带高压、高空西风槽和地面倒槽共同影响产生的;低层强盛的偏南气流建立起水汽通道,把水汽源源不断地向暴雨区输送,同时山东上空低层高温高湿,能量升高,形成上干冷、下暖湿的对流性不稳定层结;强降水产生时,暴雨区上空存在较强的中β尺度系统,该系统具有强而窄的垂直上升运动、上下垂直的辐散辐合结构和强烈的对流不稳定等特征。  相似文献   

7.
Topography as well as its attributes are fundamental factors during precipitation generation. Various models with different complexity have been established to interpret the topography–precipitation relationship. In this study, the topography–precipitation relationships simulated by two dynamical downscaling models (DDMs) at the kilometer-scale and traditional quarter-degree resolution in eastern China are evaluated by utilizing multi-scale geographically weighted regression with station precipitation observations as reference. The precipitation simulated by the kilometer-scale DDM had a higher agreement with observations than the quarter-degree simulation. For the effects of topography on precipitation, observations revealed a dominant role played by the topographical relief in the precipitation distribution at most stations in the study region. The kilometer-scale DDM generally reflected this dominant role of topographical relief. However, the quarter-degree DDM showed an excessive dependency of the precipitation distribution on the topographical elevation. This research highlights the key role of underground sub-grid variations on the precipitation in eastern China, which implies a potential way forward for precipitation simulation improvements.摘要与传统的1/4度 (≈25-30 km) 动力降尺度模拟相比, 公里尺度模拟的降水空间分布与观测结果更为接近. 为了研究这一差异原因, 本研究以华东地区为例, 探究了地形因子在观测和模拟的降水中的作用. 为了更好地体现地形因子对降水分布非均匀性的影响, 以及不同地形因子作用的尺度差异, 本研究采用多尺度地理加权回归模型, 对五个主要地形因子与公里尺度和1/4度分辨率模拟的降水的关系进行了评估. 基于观测数据的研究结果显示地形起伏度, 地形高程和离海岸线距离对华东地区降水分布的非均匀性都有重要影响, 其中地形起伏度在研究区大部分站点降水分布中起主导作用; 公里尺度模拟结果基本反映了地形起伏度的主导作用; 而1 / 4度模拟结果表现出降水对地形高程的过度依赖. 本研究揭示了公里尺度地形分布对中国东部降水的非均匀分布的关键作用, 研究结果可以为改进降水模拟提供新的思路.  相似文献   

8.
2019 was one of the hottest years in recent decades, with widespread heatwaves over many parts of the world, including Africa. However, as a developing and vulnerable region, the understanding of recent heatwave events in Africa is limited. Here, the authors incorporated different climate datasets, satellite observations, and population estimates to investigate patterns and hotspots of major heatwave events over Africa in 2019. Overall, 2019 was one of the years that experienced the strongest heatwaves in terms of intensity and duration since 1981 in Africa. Heatwave hotspots were clearly identified across western-coastal, northeastern, southern, and equatorial Africa, where major cities and human populations are located. The proportion of urban agglomerations (population) exposed to extreme (99th percentile) heatwaves in the Northern Hemisphere and Southern Hemisphere rose from 4% (5 million people) and 15% (17 million people), respectively, in the baseline period of 1981–2010 to 36% (43 million people) and 57% (53 million people), respectively, in 2019. Heatwave patterns and hotspots in 2019 were related to anomalous seasonal change in atmospheric circulation and above-normal sea surface temperature. Without adaptation to minimize susceptibility to the effects of heatwave events, the risks they pose in populated areas may increase rapidly in Africa.摘要2019 年是近几十年来最热的年份之一, 包括非洲在内的全球许多地区都受到大范围的热浪侵袭. 然而, 非洲作为脆弱的发展中地区, 我们对其近年热浪事件的了解非常有限. 本研究中, 我们结合了不同的气候数据集, 卫星观测资料和人口数据, 研究了 2019 年非洲地区主要热浪事件发生的时空特征和热点分布区. 总体而言, 2019 年是非洲地区自 1981 年以来热浪强度最强, 持续时间最久的年份之一. 在主要城市和人口所在的非洲西海岸, 东北部, 南部和赤道地区是热浪发生的热点区. 位于赤道以北的非洲地区, 暴露于极端 (第 99 个百分位) 热浪的城市人口比例从 1981–2010 年基准期的 4% (500 万人) 上升至2019 年的 36% (4300 万人). 位于赤道以南地区, 暴露于极端热浪的城市人口则从基准期的15% (1700 万人) 上升至57% (5300 万人). 2019 年的热浪时空特征和热点分布与大气环流的季节变化异常和海温的暖异常有关. 如果不及时采取适应措施以尽量减少人口对热浪事件影响的敏感性, 热浪对非洲人口稠密地区构成的风险可能会迅速增加.  相似文献   

9.
Previous studies have indicated that the stratospheric quasi-biennial oscillation (QBO) has a global impact on winter weather, but relatively less attention has been paid to its effect in summer. Using ERA5 data, this study reports that the QBO has a significant impact on the tropospheric circulation and surface air temperature (SAT) in the extratropics in Northeast Asia and the North Pacific in early summer. Specifically, a QBO-induced mean meridional circulation prevails from Northeast Asia to the North Pacific in the westerly QBO years, exhibiting westerly anomalies in 20°–35°N and easterly anomalies in 35°–65°N from the lower stratosphere to troposphere. This meridional pattern of zonal wind anomalies can excite positive vorticity and thus lead to anomalous low pressure and cyclonic circulation from Northeast Asia to the North Pacific, which in turn cause northerly wind anomalies and decreased SAT in Northeast Asia in June. Conversely, in the easterly QBO years, the QBO-related circulation and SAT anomalies are generally in an opposite polarity to those in the westerly QBO years. These findings provide new evidence of the impact of the QBO on the extratropical climate, and may benefit the prediction of SAT in Northeast Asia in early summer.摘要本文研究了平流层准两年振荡 (QBO) 对东北亚-北太平洋地区初夏对流层环流和地表气温的影响. 在QBO西风位相年, 东北亚至北太平洋地区存在一支由QBO引发的平均经向环流异常, 该经向环流异常可在东北亚至北太平洋地区激发正涡度, 并形成异常气旋式环流. 气旋左侧出现的异常偏北风导致6月东北亚地表气温下降. QBO东风位相年的结果与西风位相年大致相反. 这些结果为QBO对热带外地区天气,气候的影响提供了新的证据, 并为东北亚初夏地表气温的预测提供了新的线索.  相似文献   

10.
台风作为一种灾害性天气,其破坏性大小与自身强度有很大的关系.因此,本项研究利用NCEP-NCAR和MERRA再分析数据,考查了北大西洋,西北太平洋,东北太平洋台风强度峰值与对流层温度的关系.台风强度峰值与大气温度的相关系数,以及极大和极小台风强度峰值下大气温度的差值,共同显示:北大西洋台风强度峰值受到对流层顶低温和对流...  相似文献   

11.
Since the 2000s, extratropical extremes have been more frequent, which are closely related to anomalies of planetary-scale and synoptic-scale systems. This study focuses on a key synoptic system, the extratropical cyclonic vortex (ECV) over land, to investigate its relations with extreme precipitation. It was found that ECVs have been more active post-2000, which has induced more extreme precipitation, and such variation is projected to persist along with increasing temperature within 1.5°C of global warming. An enhanced quasi-stationary vortex (QSV) primarily contributes to the ECV, rather than inactive synoptic-scale transient eddies (STEs). Inactive STEs respond to a decline in baroclinicity due to the tendency of the homogeneous temperature gradient. However, such conditions are helpful to widening the westerly jet belt, favoring strong dynamic processes of quasi-resonant amplification and interaction of STEs with the quasi-stationary wave, and the result favors an increasing frequency and persistence of QSVs, contributing to extreme precipitation.摘要自21世纪以来, 热带外极端降水频次增加. 随着中高纬度的显著增温, 经向温度梯度减弱导致低层大气斜压性减小, 由此产生的气旋型瞬变涡天气系统等活动减弱. 然而, 热力分布导致西风急流带变宽, 经向环流加大, 有助于行星尺度波动相关的涡旋异常增加, 如东北冷涡, 中亚涡, 东欧-地中海涡, 北美涡等, 进而增加了气旋涡影响范围的极端降水频次. 在未来变暖背景和1.5°C增温的目标内, 热带外气旋涡增强会进一步促进极端降水发生.  相似文献   

12.
The quasi-biennial oscillation (QBO), a dominant mode of the equatorial stratospheric (~100–1 hPa) variability, is known to impact tropospheric circulation in the middle and high latitudes. Yet, its realistic simulation in general circulation models remains a challenge. The authors examine the simulated QBO in the 69-layer version of the Institute of Atmospheric Physics Atmospheric General Circulation Model (IAP-AGCML69) and analyze its momentum budget. The authors find that the QBO is primarily caused by parameterized gravity-wave forcing due to tropospheric convection, but the downward propagation of the momentum source is significantly offset by the upward advection of zonal wind by the equatorial upwelling in the stratosphere. Resolved-scale waves act as a positive contribution to the total zonal wind tendency of the QBO over the equator with comparable magnitude to the gravity-wave forcing in the upper stratosphere. Results provide insights into the mechanism of the QBO and possible causes of differences in models.摘要平流层准两年振荡 (QBO) 是赤道平流层 (~100–1 hPa) 变率的主要模态, 可对中高纬地区的环流产生重要影响, 但目前利用通用大气环流模式 (GCM) 对其进行准确模拟仍然是一个挑战.本文利用IAP大气环流模式 (IAP-AGCM) 的中高层大气模式版本 (IAP-AGCML69) 对QBO进行模拟, 并对其动量收支情况进行分析.研究发现, QBO主要是由对流活动引起的重力波强迫 (参数化) 引起的, 但该动量强迫被平流层赤道上升流所引起的平流过程显著削弱.模式可分辨尺度的波动强迫对赤道上空的QBO的总纬向风倾向有正贡献, 在上平流层, 其量值大小与参数化的重力波强迫相当.以上结果提供了对QBO形成机制以及模式模拟差异可能原因的认识.  相似文献   

13.
The midwinter suppression of North Pacific storm tracks (NPSTs) reflects that the linear relationship between the NPST and baroclinicity breaks in winter. Based on the reanalysis data during the cold seasons of 1979–2019 and a tracking algorithm, this study analyzes the eddy growth process and shows that an enhanced upper-tropospheric jet favors the generation of upper-level eddies on the northeast side of the Pacific jet, but increasingly suppresses the generation of those in the Northwest Pacific. The upper-level eddies generated upstream of the jet core are unable to grow sufficiently throughout the whole cold season, and only those generated downstream of the jet core can grow normally and constitute the main body of the upper-level NPST. By contrast, the main lower-level eddy genesis area and growth area coincide with the baroclinic zone, with the genesis number and local growth rate increasing with the baroclinicity.摘要北太平洋风暴轴的深冬抑制表明风暴轴强度与斜压性之间的线性关系在冬季破裂. 本研究基于1979–2019年冷季的再分析数据和拉格朗日跟踪算法, 对比分析了高低层扰动的具体生长过程. 结果表明太平洋急流的增强有利于高层扰动在急流核东北侧产生, 但却抑制其在西北太平洋的生成. 在急流核上游产生的高层扰动在整个冷季都无法充分发展, 只有在急流核下游产生的高层扰动才能正常生长且它们是构成高层太平洋风暴轴的主体. 相比之下, 低层扰动的生成区和生长区都与斜压区重合, 并且它们的生成数量和局部增长率随着斜压性的增强而增强.  相似文献   

14.
Extending the atmospheric model top to high altitude is important for simulation of upper atmospheric phenomena, such as the stratospheric quasi-biennial oscillation. The high-top version of the Institute of Atmospheric Physics Atmospheric General Circulation Model with 91 vertical layers (IAP-AGCML91) extends to the mesopause at about 0.01 hPa (~80 km). The high-top model with a fully resolved stratosphere is found to simulate a warmer stratosphere than the low-top version, except near the South Pole, thus reducing its overall cold bias in the stratosphere, and significantly in the upper stratosphere. This sensitivity is shown to be consistent with two separate mechanisms: larger shortwave heating and larger poleward stratospheric meridional eddy heat flux in the high-top model than in the low-top model. Results indicate a significant influence of vertical resolution and model top on climate simulations in IAP-AGCM.摘要提高大气环流模式的模式顶层高度对中高层大气 (如平流层准两年振荡) 的准确模拟至关重要. 本研究将IAP大气环流模型 (IAP-AGCM) 延伸至中层大气顶 (~0.01 hPa, ~80 km) 并提高垂直方向分辨率 (91层) , 发展了一个中高层大气环流模型 (IAP-AGCML91) . 结果表明, 与低层模式相比, 该中高层大气模式在整体上显著减小了平流层尤其是上平流层的冷偏差.研究发现这种改善与两种机制有关:与低层模式相比, 高层模式模拟的短波加热更大, 极区平流层附近的经向涡动热通量更大.上述结果表明, 垂直分辨率和模式顶层高度对IAP-AGCML91的气候模拟有重要影响.  相似文献   

15.
The Arctic stratospheric polar vortex was exceptional strong, cold and persistent in the winter and spring of 2019–2020. Based on reanalysis data from the National Centers for Environmental Prediction/National Center for Atmospheric Research and ozone observations from the Ozone Monitoring Instrument, the authors investigated the dynamical variation of the stratospheric polar vortex during winter 2019–2020 and its influence on surface weather and ozone depletion. This strong stratospheric polar vortex was affected by the less active upward propagation of planetary waves. The seasonal transition of the stratosphere during the stratospheric final warming event in spring 2020 occurred late due to the persistence of the polar vortex. A positive Northern Annular Mode index propagated from the stratosphere to the surface, where it was consistent with the Arctic Oscillation and North Atlantic Oscillation indices. As a result, the surface temperature in Eurasia and North America was generally warmer than the climatology. In some places of Eurasia, the surface temperature was about 10 K warmer during the period from January to February 2020. The most serious Arctic ozone depletion since 2004 has been observed since February 2020. The mean total column ozone within 60°–90°N from March to 15 April was about 80 DU less than the climatology.摘要2019-2020冬季北极平流层极涡异常并且持续的偏强,偏冷.利用NCEP再数据和OMI臭氧数据, 本文分析了此次强极涡事件中平流层极涡的动力场演变及其对地面暖冬天气和臭氧低值的影响.此次强极涡的形成是由于上传行星波不活跃.持续的强极涡使得2020年春季的最后增温出现时间偏晚.平流层正NAM指数向下传播到地面, 与地面AO指数和NAO指数相一致, 欧亚大陆和北美地面气温均比气候态偏暖, 在欧亚大陆的一些地区, 2020年1月和2月的气温甚至偏高了10K.2020年2月以来北极臭氧出现了2004年以来的最低值, 2020年3-4月60°–90°N的平均臭氧柱总量比气候态偏低了80DU.  相似文献   

16.
Spectral relative dispersion of different hydrometeors is vital to accurately describe sedimentation. Here, the Weather Research and Forecasting model with spectral bin microphysics is used to simulate convective clouds in Shouxian of Anhui province in China to study the spectral relative dispersion of different hydrometeors. Firstly, regardless of clean or polluted conditions, the relative dispersion of ice crystal spectra and its volume-mean diameter are negatively correlated, while the relative dispersion of other hydrometeor spectra is positively related to their respective volume-mean diameter. The correlations for cloud droplets and raindrops are affected by the process of collision–coalescence; the correlations for ice crystals, graupel particles, and snow particles could be affected by the deposition, riming, and aggregation processes, respectively. Secondly, relative dispersion parameterizations are developed based on a comprehensive consideration of the relationships between the relative dispersion and volume-mean diameter under both polluted and clean conditions. Finally, the relative dispersion parameterizations are applied to terminal velocity parameterizations. The results show that for cloud droplets, ice crystals, graupel particles, and snow particles, assuming the shape parameter in the Gamma distribution is equal to 0 underestimates the shape parameter and overestimates the relative dispersion; and for raindrops, assuming the shape parameter is equal to 0 is close to the relative dispersion parameterizations. The most appropriate constant shape parameters are recommended for different hydrometeors. The relative dispersion parameterizations developed here shed new light for further optimizing the terminal velocity parameterizations in models.摘要离散度的诊断对模式中沉降过程的准确描述至关重要. 本文利用WRF模式结合谱分档方案模拟安徽寿县地区的对流云, 研究不同水成物的离散度. 首先, 无论在清洁还是污染条件下, 除冰晶谱的离散度与体积平均直径间呈现负相关关系外, 云滴, 雨滴, 霰粒子与雪粒子谱离散度与体积平均直径呈现正相关关系; 云滴和雨滴受碰并过程影响, 冰晶, 霰粒子和雪粒子分别受凝华过程, 淞附过程和聚并增长影响. 其次, 综合考虑污染与清洁条件下离散度和体积平均直径之间的相关关系, 建立了离散度的参数化方案. 最后, 把该离散度方案应用到下落末速度的参数化方案中, 结果表明, 对于云滴, 冰晶, 霰粒子和雪粒子, 在Gamma分布中假设谱形参数等于0会低估谱形参数而高估离散度. 对于雨滴而言, 假设谱形参数等于0与参数化方案结果接近. 针对不同的水成物, 给出了最合适的谱形参数定值. 本文发展的离散度方案为进一步优化模式中下落末速度参数化方案提供参考.  相似文献   

17.
The stratospheric polar vortex (SPV), which is an important factor in subseasonal-to-seasonal climate variability and climateprediction, exhibited a remarkable transition from weak in early winter to strong in late winter in 1987/88 (most significant on the interannual timescale during 1979–2019). Therefore, in this study, the subseasonal predictability of this transition SPV case in 1987/88 was investigated using the hindcasts from a selected model (that of the Japan Meteorological Agency) in the Subseasonal-to-Seasonal Prediction project database. Results indicated that the predictability of both weak and strong SPV stages in winter 1987/88, especially near their peak dates, exhibited large sensitivity to the initial condition, which derived mainly from the sensitivity in capturing the 100-hPa eddy heat flux anomalies. Meanwhile, the key tropospheric precursory systems with respect to the occurrence and predictability of this transition SPV case were investigated. The Eurasian teleconnection wave trains might have been a key precursor for the weak SPV stage, while significant tropospheric precursors for the strong SPV stage were not found in this study. In addition, positive correlation (r = 0.41) existed between the forecast biases of the SPV and the NAO in winter 1987/88, which indicates that reducing the forecast biases of the SPV might help to improve the forecasting of the NAO and tropospheric weather.摘要平流层极涡作为冬季次季节尺度上一个重要的可预测性来源, 其强度在1987/88年冬季表现为1979–2019年最显著的转折, 即在前 (后) 冬极端偏弱 (强). 因此在本文中选取这一个例研究了该年冬季平流层极涡在次季节尺度上的可预测性. 结果表明弱极涡和强极涡事件的预测与模式能否准确预测上传行星波的强度紧密相关. 同时, 发现前期对流层欧亚遥相关波列可能是弱极涡事件发生的关键预兆信号. 此外, 模式对平流层极涡强度和北大西洋涛动预测误差之间存在显著正相关关系, 表明模式减少平流层极涡的预测误差可能可以提高北大西洋涛动及相关对流层气候预测.  相似文献   

18.
The relationship between North Atlantic tropical cyclone (TC) peak intensity and subsurface ocean temperature is investigated in this study using atmospheric and ocean reanalysis data. It is found that the peak intensity of basin-wide strong TCs (Categories 4 and 5) is positively correlated with subsurface ocean temperature in the extratropical North Atlantic. A possible physical mechanism is that subsurface ocean temperature in the extratropical North Atlantic can affect local sea surface temperature (SST); on the other hand, the moisture generated by the warming SST in the extratropical North Atlantic is transported to the main region of TC development in the tropics by a near-surface anticyclonic atmospheric circulation over the tropical North Atlantic, affecting TC peak intensity. Moreover, coastal upwelling off Northwest Africa and southern Europe can affect subsurface ocean temperature in the extratropical North Atlantic. Therefore, the peak intensity of strong TCs is also found to be directly correlated with the water temperature in these two upwelling regions on an interdecadal timescale.摘要利用大气与海洋再分析数据等相关资料, 本项研究发现, 北大西洋强台风 (Saffir–Simpson分类中的第4和第5类) 的最大强度与亚热带北大西洋的次表层海温呈正相关. 由于亚热带北大西洋的次表层海温会影响当地的海表温度, 该地区海面产生的水汽通过近地面的反气旋大气环流可被输送到位于热带的台风主要发展区域, 进而影响台风的最大强度. 与此同时, 位于西非北部和南欧的近岸涌升流会影响亚热带北大西洋的次表层海温. 因此, 强台风的最大强度也被发现与上述两个涌升流区域的海温具有相关性, 但是这种相关性主要体现在年代际时间尺度上.  相似文献   

19.
Tropical cyclones (TCs) seriously endanger human life and the safety of property. Real-time monitoring of TCs has been one of the focal points in meteorological studies. With the development of space technology and sensor technology, satellite remote sensing has become the main means of monitoring TCs. Furthermore, with its superior data mining capability, deep learning has shown advantages over traditional physical or statistical-based algorithms in the geosciences. As a result, more deep-learning algorithms are being developed and applied to extract TC information. This paper systematically reviews the deep-learning frameworks used for TC information extraction and then gives two typical applications of deep-learning models for TC intensity and wind radius estimation. In addition, the authors present an outlook on the future perspectives of deep learning in TC information extraction.摘要热带气旋 (TC) 严重危害人类生命和财产安全, TC的实时监测一直是研究热点, 随着空间和传感器技术的发展, 卫星遥感已成为监测TC的主要手段. 此外, 深度学习具有卓越的数据挖掘能力, 在地球科学中的表现优于基于物理或统计的算法, 越来越多的深度学习算法被开发和应用于TC信息的提取, 本文系统地回顾了深度学习在TC信息提取中的应用, 并给出了深度学习模型在TC强度和风圈半径提取中的应用. 此外, 本文还展望了深度学习在TC信息提取中的应用前景.  相似文献   

20.
This paper investigates the distribution of spatial modes of cloud-to-ground (CG) lightning activity across China's land areas during the period 2010–20 and their possible causes based on the CG lightning dataset of the China National Lightning Detection Network. It is found that the first empirical orthogonal function mode (EOF1) occupies 32.86% of the total variance of the summer CG lightning anomaly variation. Also, it exhibits a negative–positive–negative meridional seesaw pattern from north to south. When the SST of the East Pacific and Indian Ocean warms abnormally and the SST of the Northwest Pacific becomes abnormally cold, a cyclonic circulation is stimulated in the Yellow Sea, East China Sea, and tropical West Pacific region of China. As the water vapor continues to move southwards, it converges with the water vapor deriving from the Bay of Bengal in South China, and ascending motion strengthens here, thus enhancing the CG lightning activity of this area. Affected by the abnormal high pressure, the corresponding CG lightning activities in North China and Northeast China are relatively weak. The ENSO phenomenon is the climate driver for the CG lightning activity occurring in land areas of China.摘要本文利用中国气象局国家雷电监测网 (CNLDN) 的地闪观测数据集, 分析了2010–2020年中国陆地区域地闪空间模态分布特征及其可能的气候成因. 研究发现, 夏季地闪第一模态的方差贡献率为32.86%, 其分布从北到南呈现出“−+−”的经向跷跷板模式. 当东太平洋和印度洋的海温异常增暖, 西北太平洋的海温异常变冷时, 在中国黄海, 东海及热带西太平洋地区激发出气旋性环流. 随着水汽南下至华南地区, 与来自孟加拉湾的水汽汇合, 上升运动在此加强, 从而使得该地区的雷电活动增强. 表明厄尔尼诺-南方涛动 (ENSO) 现象, 是发生在中国陆地区域的地闪活动的气候驱动因子.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号