共查询到20条相似文献,搜索用时 23 毫秒
1.
Anna M. Schoepf Dr. Stefan Salcher Verena Hohn Florina Veider Prof. Dr. Petra Obexer Prof. Dr. Ronald Gust 《ChemMedChem》2020,15(12):1067-1077
New strategies to eradicate cancer stem cells in chronic myeloid leukemia (CML) include a combination of imatinib with peroxisome proliferator-activated receptor gamma (PPARγ) ligands. Recently, we identified the partial PPARγ agonist telmisartan as effective sensitizer of resistant K562 CML cells to imatinib treatment. Here, the importance of the heterocyclic core on the cell death-modulating effects of the telmisartan-derived lead 4′-((2-propyl-1H-benzo[d]imidazol-1-yl)methyl)-[1,1′-biphenyl]-2-carboxylic acid ( 3 b ) was investigated. Inspired by the pharmacodynamics of HYL-6d and the selective PPARγ ligand VSP-51, the benzimidazole was replaced by a carbazole or an indole core. The results indicate no correlation between PPARγ activation and sensitization of resistant CML cells to imatinib. The 2-COOH derivatives of the carbazoles or indoles achieved low activity at PPARγ, while the benzimidazoles showed 60-100 % activation. Among the 2-CO2CH3 derivatives, only the ester of the lead ( 2 b ) slightly activated PPARγ. Sensitizing effects were further observed for this non-cytotoxic 2 b (80 % cell death), and to a lesser extent for the lead 3 b or the 5-Br-substituted ester of the benzimidazoles ( 5 b ). 相似文献
2.
Yi-Hue Kuo Shih-Hsiang Wei Jie-Hau Jiang Yueh-Shih Chang Mei-Yin Liu Shu-Ling Fu Chi-Ying F. Huang Wey-Jinq Lin 《International journal of molecular sciences》2021,22(22)
Chronic myeloid leukemia (CML) is a hematopoietic malignancy characterized by the presence of the BCR-ABL oncogene. Therapeutic regimens with tyrosine kinase inhibitors (TKIs) specifically targeting BCR-ABL have greatly improved overall survival of CML. However, drug intolerance and related toxicity remain. Combined therapy is effective in reducing drug magnitude while increasing therapeutic efficacy and, thus, lowers undesired adverse side effects. The p38 MAPK activity is critically linked to the pathogenesis of a number of diseases including hematopoietic diseases; however, the role of each isozyme in CML and TKI-mediated effects is still elusive. In this study, we used specific gene knockdown to clearly demonstrate that the deficiency of p38α greatly enhanced the therapeutic efficacy in growth suppression and cytotoxicity of TKIs, first-generation imatinib, and second generation dasatinib by approximately 2.5–3.0-fold in BCR-ABL-positive CML-derived leukemia K562 and KMB5 cells. Knockdown of p38β, which displays the most sequence similarity to p38α, exerted distinct and opposite effects on the TKI-mediated therapeutic efficacy. These results show the importance of isotype-specific intervention in enhancing the therapeutic efficacy of TKI. A highly specific p38α inhibitor, TAK715, also significantly enhanced the imatinib- and dasatinib-mediated therapeutic efficacy, supporting the feasibility of p38α deficiency in future clinic application. Taken together, our results demonstrated that p38α is a promising target for combined therapy with BCR-ABL-targeting tyrosine kinase inhibitors for future application to increase therapeutic efficacy. 相似文献
3.
Omar Prado-Carrillo Abner Arenas-Ramírez Monserrat Llaguno-Munive Rafael Jurado Jazmin Prez-Rojas Eduardo Cervera-Ceballos Patricia Garcia-Lopez 《International journal of molecular sciences》2022,23(14)
Chronic myeloid leukemia (CML) is a hematologic disorder characterized by the oncogene BCR-ABL1, which encodes an oncoprotein with tyrosine kinase activity. Imatinib, a BCR-ABL1 tyrosine kinase inhibitor, performs exceptionally well with minimal toxicity in CML chemotherapy. According to clinical trials, however, 20–30% of CML patients develop resistance to imatinib. Although the best studied resistance mechanisms are BCR-ABL1-dependent, P-glycoprotein (P-gp, a drug efflux transporter) may also contribute significantly. This study aimed to establish an imatinib-resistant human CML cell line, evaluate the role of P-gp in drug resistance, and assess the capacity of ketoconazole to reverse resistance by inhibiting P-gp. The following parameters were determined in both cell lines: cell viability (as the IC50) after exposure to imatinib and imatinib + ketoconazole, P-gp expression (by Western blot and immunofluorescence), the intracellular accumulation of a P-gp substrate (doxorubicin) by flow cytometry, and the percentage of apoptosis (by the Annexin method). In the highly resistant CML cell line obtained, P-gp was overexpressed, and the level of intracellular doxorubicin was low, representing high P-gp activity. Imatinib plus a non-toxic concentration of ketoconazole (10 μM) overcame drug resistance, inhibited P-gp overexpression and its efflux function, increased the intracellular accumulation of doxorubicin, and favored greater apoptosis of CML cells. P-gp contributes substantially to imatinib resistance in CML cells. Ketoconazole reversed CML cell resistance to imatinib by targeting P-gp-related pathways. The repurposing of ketoconazole for CML treatment will likely help patients resistant to imatinib. 相似文献
4.
Adrhyann Jullyanne de Sousa Portilho Emerson Lucena da Silva Emanuel Cintra Austregsilo Bezerra Carinne Borges de Souza Moraes Rego Gomes Vitor Ferreira Maria Elisabete Amaral de Moraes David Rodrigues da Rocha Rommel Mrio Rodriguez Burbano Caroline Aquino Moreira-Nunes Raquel Carvalho Montenegro 《International journal of molecular sciences》2022,23(15)
The multidrug resistance (MDR) phenotype is one of the major obstacles in the treatment of chronic myeloid leukemia (CML) in advantage stages such as blast crisis. In this scenario, more patients develop resistance mechanisms during the course of the disease, making tyrosine kinase inhibitors (TKIs) target therapies ineffective. Therefore, the aim of the study was to examine the pharmacological role of CNN1, a para-naphthoquinone, in a leukemia multidrug resistant cell line. First, the in vitro cytotoxic activity of Imatinib Mesylate (IM) in K-562 and FEPS cell lines was evaluated. Subsequently, membrane integrity and mitochondrial membrane potential assays were performed to assess the cytotoxic effects of CNN1 in K-562 and FEPS cell lines, followed by cell cycle, alkaline comet assay and annexin V-Alexa Fluor® 488/propidium iodide assays (Annexin/PI) using flow cytometry. RT-qPCR was used to evaluate the H2AFX gene expression. The results demonstrate that CNN1 was able to induce apoptosis, cell membrane rupture and mitochondrial membrane depolarization in leukemia cell lines. In addition, CNN1 also induced genotoxic effects and caused DNA fragmentation, cell cycle arrest at the G2/M phase in leukemia cells. No genotoxicity was observed on peripheral blood mononuclear cells (PBMC). Additionally, CNN1 increased mRNA levels of H2AFX. Therefore, CNN1 presented anticancer properties against leukemia multidrug resistant cell line being a potential anticancer agent for the treatment of resistant CML. 相似文献
5.
Proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on human chronic myeloid leukemia k562 cell line in vitro 总被引:1,自引:0,他引:1
Miao S Shi X Zhang H Wang S Sun J Hua W Miao Q Zhao Y Zhang C 《International journal of molecular sciences》2011,12(6):3831-3845
Tryptanthrin, a kind of indole quinazoline alkaloid, has been shown to exhibit anti-microbial, anti-inflammation and anti-tumor effects both in vivo and in vitro. However, its biological activity on human chronic myeloid leukemia cell line K562 is not fully understood. In the present study, we investigated the proliferation-attenuating and apoptosis-inducing effects of tryptanthrin on leukemia K562 cells in vitro and explored the underlying mechanisms. The results showed that tryptanthrin could significantly inhibit K562 cells proliferation in a time- and dose-dependent manner as evidenced by MTT assay and flow cytometry analysis. We also observed pyknosis, chromatin margination and the formation of apoptotic bodies in the presence of tryptanthrin under the electron microscope. Nuclei fragmentation and condensation by Hoechst 33258 staining were detected as well. The amount of apoptotic cells significantly increased whereas the mitochondrial membrane potential decreased dramatically after tryptanthrin exposure. K562 cells in the tryptanthrin treated group exhibited an increase in cytosol cyt-c, Bax and activated caspase-3 expression while a decrease in Bcl-2, mito cyt-c and pro-caspase-3 contents. However, the changes of pro-caspase-3 and activated caspase-3 could be abolished by a pan-caspase inhibitor ZVAD-FMK. These results suggest that tryptanthrin has proliferation-attenuating and apoptosis-inducing effects on K562 cells. The underlying mechanism is probably attributed to the reduction in mitochondria membrane potential, the release of mito cyt-c and pro-caspase-3 activation. 相似文献
6.
Marialuisa Polillo Sara Galimberti Claudia Baratè Mario Petrini Romano Danesi Antonello Di Paolo 《International journal of molecular sciences》2015,16(9):22811-22829
Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed. 相似文献
7.
Carmelo Gurnari Simona Pagliuca Valeria Visconte 《International journal of molecular sciences》2020,21(22)
Acute myeloid leukemia (AML) is a clonal hematopoietic disorder characterized by abnormal proliferation, lack of cellular differentiation, and infiltration of bone marrow, peripheral blood, or other organs. Induction failure and in general resistance to chemotherapeutic agents represent a hindrance for improving survival outcomes in AML. Here, we review the latest insights in AML biology concerning refractoriness to therapies with a specific focus on cytarabine and daunorubicin which still represent milestones agents for inducing therapeutic response and disease eradication. However, failure to achieve complete remission in AML is still high especially in elderly patients (40–60% in patients >65 years old). Several lines of basic and clinical research have been employed to improve the achievement of complete remission. These lines of research include molecular targeted therapy and more recently immunotherapy. In terms of molecular targeted therapies, specific attention is given to DNMT3A and TP53 mutant AML by reviewing the mechanisms underlying epigenetic therapies’ (e.g., hypomethylating agents) resistance and providing critical points and hints for possible future therapies overcoming AML refractoriness. 相似文献
8.
9.
There is compelling evidence to support the view that the cell-of-origin for chronic myeloid leukemia is a hematopoietic stem cell. Unlike normal hematopoietic stem cells, the progeny of the leukemia stem cells are predominantly neutrophils during the disease chronic phase and there is a mild anemia. The hallmark oncogene for chronic myeloid leukemia is the BCR-ABLp210 fusion gene. Various studies have excluded a role for BCR-ABLp210 expression in maintaining the population of leukemia stem cells. Studies of BCR-ABLp210 expression in embryonal stem cells that were differentiated into hematopoietic stem cells and of the expression in transgenic mice have revealed that BCR-ABLp210 is able to veer hematopoietic stem and progenitor cells towards a myeloid fate. For the transgenic mice, global changes to the epigenetic landscape were observed. In chronic myeloid leukemia, the ability of the leukemia stem cells to choose from the many fates that are available to normal hematopoietic stem cells appears to be deregulated by BCR-ABLp210 and changes to the epigenome are also important. Even so, we still do not have a precise picture as to why neutrophils are abundantly produced in chronic myeloid leukemia. 相似文献
10.
Débora Renz Barreto Vianna Jessica Gotardi Prof. Simone Cristina Baggio Gnoatto Prof. Diogo André Pilger 《ChemMedChem》2021,16(12):1835-1860
Chronic myeloid leukemia (CML) is a neoplasm characterized by BCR-ABL1, an oncoprotein with vital role in leukemogenesis. Its inhibition by tyrosine kinase inhibitors represents the main choice of treatment. However, therapeutic failure is worrying given the lack of pharmacological options. Pentacyclic triterpenes are phytochemicals with outstanding antitumoral properties and have also been explored as a basis for the design of potential leads. In this review, we have gathered and discuss data regarding both natural and semisynthetic pentacyclic triterpenes applied to CML cell treatment. We found consistent evidence that the class of pentacyclic triterpenes in general exerts promising pro-apoptotic and antiproliferative activities in sensitive and resistant CML cells, and thus represents a rich source for drug development. We also analyze the predicted drug-like properties of the molecules, discuss the structural changes with biological implications and show the great opportunities this class represents, as well as the perspectives they provide on drug discovery for CML treatment. 相似文献
11.
Ewelina Synowiec Grazyna Hoser Katarzyna Wojcik Elzbieta Pawlowska Tomasz Skorski Janusz B?asiak 《International journal of molecular sciences》2015,16(8):18111-18128
Chronic myeloid leukemia (CML) cells express the active BCR-ABL1 protein, which has been targeted by imatinib in CML therapy, but resistance to this drug is an emerging problem. BCR-ABL1 induces endogenous oxidative stress promoting genomic instability and imatinib resistance. In the present work, we investigated the extent of oxidative stress, DNA damage, apoptosis and expression of apoptosis-related genes in BCR-ABL1 cells sensitive and resistant to imatinib. The resistance resulted either from the Y253H mutation in the BCR-ABL1 gene or incubation in increasing concentrations of imatinib (AR). UV irradiation at a dose rate of 0.12 J/(m2·s) induced more DNA damage detected by the T4 pyrimidine dimers glycosylase and hOGG1, recognizing oxidative modifications to DNA bases in imatinib-resistant than -sensitive cells. The resistant cells displayed also higher susceptibility to UV-induced apoptosis. These cells had lower native mitochondrial membrane potential than imatinib-sensitive cells, but UV-irradiation reversed that relationship. We observed a significant lowering of the expression of the succinate dehydrogenase (SDHB) gene, encoding a component of the complex II of the mitochondrial respiratory chain, which is involved in apoptosis sensing. Although detailed mechanism of imatinib resistance in AR cells in unknown, we detected the presence of the Y253H mutation in a fraction of these cells. In conclusion, imatinib-resistant cells may display a different extent of genome instability than their imatinib-sensitive counterparts, which may follow their different reactions to both endogenous and exogenous DNA-damaging factors, including DNA repair and apoptosis. 相似文献
12.
Magdalena Kimsa-Dudek Agnieszka Synowiec-Wojtarowicz Agata Krawczyk Agnieszka Kosowska Magorzata Kimsa-Furdzik Tomasz Francuz 《International journal of molecular sciences》2022,23(7)
The induction of apoptosis is one of the main goals of the designed anti-cancer therapies. In recent years, increased attention has been paid to the physical factors such as magnetic fields and to the natural bioactive compounds and the possibilities using them in medicine. Hence, the aim of this study was to evaluate the anti-tumor effect of caffeic or chlorogenic acid in combination with a moderate-strength static magnetic field on C32 melanoma cells by assessing the effect of both factors on the apoptotic process. The apoptosis of the C32 cells was evaluated using a flow cytometry analysis. The expression of the apoptosis-associated genes was determined using the RT-qPCR technique. The caspase activity and the concentration of the oxidative damage markers were also measured. It was found that phenolic acids and a static magnetic field trigger the apoptosis of the C32 cells and also affect the expression of the genes encoding the apoptosis regulatory proteins. In conclusion, our study indicated that both of the phenolic acids and a static magnetic field can be used supportively in the treatment of melanoma and that caffeic acid is more pro-apoptotic than chlorogenic acid. 相似文献
13.
Chang-Fang Chiu Jing-Ru Weng Appaso Jadhav Chia-Yung Wu Aaron M. Sargeant Li-Yuan Bai 《International journal of molecular sciences》2016,17(8)
T315, an integrin-linked kinase (ILK) inhibitor, has been shown to suppress the proliferation of breast cancer, stomach cancer and chronic lymphocytic leukemia cells. Here we demonstrate that T315 decreases cell viability of acute myeloid leukemia (AML) cell lines (HL-60 and THP-1) and primary leukemia cells from AML patients in a dose-responsive manner. Normal human bone marrow cells are less sensitive than leukemia cells to T315. T315 down regulates protein kinase B (Akt) and p-Akt and induces caspase activation, poly-ADP-ribose polymerase (PARP) cleavage, apoptosis and autophagy through an ILK-independent manner. Interestingly, pretreatment with autophagy inhibitors rescues cells from apoptosis and concomitant PARP cleavage, which implicates a key role of autophagic cell death in T315-mediated cytotoxicity. T315 also demonstrates efficacy in vivo, suppressing the growth of THP-1 xenograft tumors in athymic nude mice when administered intraperitoneally. This study shows that autophagic cell death and apoptosis cooperatively contribute to the anticancer activity of T315 in AML cells. In conclusion, the complementary roles of apoptotic and autophagic cell death should be considered in the future assessment of the translational value of T315 in AML therapy. 相似文献
14.
Bilal Abdulmawjood Beatriz Costa Catarina Roma-Rodrigues Pedro V. Baptista Alexandra R. Fernandes 《International journal of molecular sciences》2021,22(22)
Chronic Myeloid Leukemia (CML) is a rare malignant proliferative disease of the hematopoietic system, whose molecular hallmark is the Philadelphia chromosome (Ph). The Ph chromosome originates an aberrant fusion gene with abnormal kinase activity, leading to the buildup of reactive oxygen species and genetic instability of relevance in disease progression. Several genetic abnormalities have been correlated with CML in the blast phase, including chromosomal aberrations and common altered genes. Some of these genes are involved in the regulation of cell apoptosis and proliferation, such as the epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), or Schmidt-Ruppin A-2 proto-oncogene (SRC); cell adhesion, e.g., catenin beta 1 (CTNNB1); or genes associated to TGF-β, such as SKI like proto-oncogene (SKIL), transforming growth factor beta 1 (TGFB1) or transforming growth factor beta 2 (TGFB2); and TNF-α pathways, such as Tumor necrosis factor (TNFA) or Nuclear factor kappa B subunit 1 (NFKB1). The involvement of miRNAs in CML is also gaining momentum, where dysregulation of some critical miRNAs, such as miRNA-451 and miRNA-21, which have been associated to the molecular modulation of pathogenesis, progression of disease states, and response to therapeutics. In this review, the most relevant genomic alterations found in CML will be addressed. 相似文献
15.
16.
Fabio Forghieri Vincenzo Nasillo Ambra Paolini Francesca Bettelli Valeria Pioli Davide Giusti Andrea Gilioli Corrado Colasante Gloria Acquaviva Giovanni Riva Patrizia Barozzi Rossana Maffei Leonardo Potenza Roberto Marasca Claudio Fozza Enrico Tagliafico Tommaso Trenti Patrizia Comoli Giuseppe Longo Mario Luppi 《International journal of molecular sciences》2020,21(23)
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage. 相似文献
17.
18.
Jan Šrámek;Vlasta Němcová;Jan Kovář;Nela Pavlíková; 《European Journal of Lipid Science and Technology》2024,126(6):2300206
Long-term elevation of saturated fatty acids in blood has a deleterious effect on pancreatic β-cell function and survival, leading to endoplasmic reticulum (ER) stress and apoptosis. This fundamentally contributes to type 2 diabetes development. Caffeic acid (CA) was found to protect various cell types against several proapoptotic stimuli, including fatty acids. However, its potential protective effect against fatty acid-induced apoptosis was not ascertained in pancreatic β cells yet. Therefore, the objective of this study was to examine this in the human pancreatic β-cell lines NES2Y and 1.1B4. In both cell lines, CA did not modify the effect of saturated stearic acid (SA) on β-cell growth and viability. At higher concentrations, CA significantly even intensified the adverse effect of SA. Consistent with this, CA did not exhibit any inhibitory effect on SA-induced markers of ongoing apoptosis as well as ER stress. At higher concentrations, CA again slightly potentiated the effect of SA. CA applied alone was well tolerated up to 1 mM; however, at higher concentrations, it had detrimental effects in both cell lines. To conclude, we have shown that the treatment with caffeic acid has no inhibitory effect on SA-induced ER stress and apoptosis in the human pancreatic β cells. Moreover, at higher concentrations, CA has proapoptotic potential. 相似文献
19.
20.
Marte Karen Bratts Anette Lodvir Hemsing Kristin Paulsen Rye Kimberley Joanne Hatfield Hkon Reikvam 《International journal of molecular sciences》2022,23(23)
Acute myeloid leukemia (AML) is an aggressive hematological malignancy with a dismal prognosis. The cytoplasmic spleen tyrosine kinase (SYK) is highly expressed by hematopoietic cells and has emerged as a potential therapeutic target. In this study, we evaluated the in vitro antileukemic effects of five SYK inhibitors, fostamatinib, entospletinib, cerdulatinib, TAK-659, and RO9021, in a consecutive AML patient cohort. All inhibitors demonstrated a concentration-dependent antiproliferative effect, although there was considerable heterogeneity among patients. For fostamatinib and TAK-659, the antiproliferative effects were significantly higher in FLT3 mutated patients compared to nonmutated patients. Fostamatinib, entospletinib, TAK-659, and RO9021 induced significant apoptosis in primary AML cells, although the proapoptotic effects of the SYK inhibitors were less pronounced than the antiproliferative effects. Finally, most of the SYK inhibitors caused a significant decrease in the release of cytokines and chemokines from primary AML cells, indicating a potent inhibitory effect on the release of these leukemic signaling molecules. We concluded that the SYK inhibitors had antileukemic effects in AML, although larger studies are strongly needed to identify which patient subsets will benefit most from such a treatment. 相似文献