首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对连续组合梁桥负弯矩区桥面板易开裂的难题,提出了新型钢-混组合梁桥负弯矩区UHPC (Ultra-High Performance Concrete)接缝方案。通过建立Midas有限元模型分析了应用UHPC接缝的连续组合梁桥负弯矩区的抗弯性能,自编Matlab程序分析连续组合梁桥的裂后截面刚度折减与内力重分布,并从抗裂性能角度进行参数分析。结果表明,组合梁桥负弯矩区UHPC接缝具有良好的技术先进性和经济性。  相似文献   

2.
分析了混凝土结构温度场边界条件计算方法,以青海省海黄大桥H形混凝土桥塔为工程背景,计算了高原高寒地区四季典型气象条件下的桥塔温度场分布,对比了四季的桥塔表面温差和塔壁局部温差,确定了桥塔的最不利温度荷载,建立了桥塔整体有限元模型,分析了四季桥塔的偏位、竖向应力、横向应力和纵向应力等温度效应。分析结果表明:桥塔表面温差与桥塔局部温差均在冬季最大,最大值分别可达11.88℃、20.79℃,在夏季最小,最大值分别可达5.15℃、15.25℃;横桥向和纵桥向桥塔表面温差最大值分别达到9.15℃、11.88℃,远大于《公路斜拉桥设计细则》(JTG/T D65-01—2007)推荐值±5℃;接近正南方向的塔壁局部温差最大,沿壁厚方向的温差分布接近指数形式,冬季和夏季温度衰减系数最大值分别为4.50、5.01,故冬季桥塔壁板局部温度分布较夏季更不均匀;桥塔温度效应同样在冬季最大,1天中最大桥塔偏位超过40mm,白天桥塔偏位变化值超过15mm,不利于施工过程中的桥塔偏位监测;桥塔根部竖向最大拉应力达到2.2MPa,桥塔根部同样产生较大水平向拉应力,纵桥向和横桥向最大拉应力分别为1.82、0.82 MPa,均发生在桥塔内侧,在与其他作用组合时可能会造成桥塔开裂,建议在桥塔塔壁内侧布置一定量的钢筋网片来控制裂缝;在进行高原高寒地区桥塔设计和施工控制时,应充分考虑温度效应带来的不利影响。  相似文献   

3.
为了解决双主梁钢板组合梁负弯矩区桥面板易开裂的难题, 将超高性能混凝土 UHPC (Ultra-High Per? formance Concrete) 应用于横向现浇湿接缝。 以瑞苍高速公路一联双主梁钢板组合连续梁桥为工程背景, 介绍了负弯矩区 UHPC 接缝方案的设计要点, 并与常规接缝方案进行技术对比。 同时, 通过有限元建模计算, 分析了 UHPC 接缝的受力性能。 研究结果表明: 负弯矩区 UHPC 接缝结构技术先进, 便于快速化施工; 承载能力、 抗裂性能及 UHPC 桥面板疲劳性能均可满足要求, 安全性能良好, 应用前景广阔。  相似文献   

4.
为探究干寒大温差下早龄期混凝土收缩变形规律,降低开裂风险,采用3种养护方法对混凝土进行早龄期养护,以抗压强度、劈裂抗拉强度、自由收缩率及最大约束应力为表征手段,设置了基本力学性能试验、自由收缩试验与约束收缩试验,并采用综合型多指标的灰色关联法分析了不同养护方式下混凝土的抗裂性能.同时,设计了纳米涂层保温性能试验,探究其对混凝土的保温隔热性能.试验结果表明:在-20.0~15.0℃的循环温度中,采用纳米涂层使得圆柱体混凝土试件内部平均温差降低2.95℃;相比于标准养护,3种养护方式下混凝土抗压及劈裂抗拉强度均有显著降低,干寒大温差不利于混凝土的强度发展;自由收缩率随温度变化明显,呈现出温度降低,自由收缩率增大,反之,温度升高自由收缩率减小,并在-20.0℃与15.0℃时出现极值;最大约束应力受到养护方式影响,自然养护下最大约束应力发展最快,终值最大,薄膜养护次之,涂层养护最大约束应力发展最慢,终值最小;涂层养护下灰色关联度高达0.914 9,明显高于自然养护与薄膜养护,表现出优异的抗裂性能.  相似文献   

5.
混凝土连续梁箱形输水桥日照温度应力分析   总被引:1,自引:0,他引:1  
根据混凝土箱形输水桥的温度边界特点,给出了箱形输水桥日照温差二次曲线分布形式;针对该日照温度梯度模式,按照温度自约束应力的平衡特点和等效线性化的原则,导出了混凝土箱形输水桥的温度应力计算公式和等效线性化后的特征参数计算公式.对某水库输水桥的计算表明:日照作用下混凝土连续梁箱形输水桥中跨截面下缘将产生较大的拉应力,会降低截面抗裂性,应加强纵向预应力钢筋,提高其抗裂能力.  相似文献   

6.
为降低超高性能混凝土(UHPC)收缩和开裂风险, 进行了5组不同粗集料掺量(质量分数分别为0、12.5%、22.5%、32.5%和42.5%)的UHPC的自收缩、基本材性(抗压强度、抗拉强度和弹性模量)、集料级配和圆环约束收缩等试验, 分析了粗集料掺量和集料级配对UHPC自收缩和基本材性的影响, 并采用提出的收缩开裂应力相对差值评价粗集料的掺入对UHPC收缩开裂的影响; 进行了有、无粗集料UHPC在圆环约束下的开裂性能试验与对比分析, 验证粗集料掺入对减小UHPC收缩开裂的有效性, 并给出UHPC中粗集料掺量和最大粒径限制的建议。研究结果表明: 随着粗集料掺量的增加, UHPC早期自收缩量降低, 最大降幅近20%;粗集料对UHPC的弹性模量、抗压强度和抗拉强度等的影响程度与其掺量和级配有关, 当粗集料掺量为22.5%时, 其级配曲线几乎全部处于富勒氏与泰勃特曲线范围内, 是5组材料中堆积最紧密的一组, 对UHPC弹性模量与抗压强度提高最为显著, 对抗拉强度的降低幅度影响最小; 当粗集料掺量为22.5%时, UHPC收缩开裂应力相对差值最大为1.31 MPa, 为试验中的最合理掺量, 可有效降低收缩开裂风险; 与未掺粗集料的UHPC相比, 圆环约束下掺有22.5%粗集料的UHPC的残余应力与拉应力水平分别降低15.8%和14.7%, 其抗裂性能得到提高; 建议对粗集料UHPC进行紧密堆积设计以获得尽可能优的材性, 对掺有长度为12~20 mm钢纤维的UHPC, 其集料的最大粒径可放宽至9.5 mm。   相似文献   

7.
为揭示组合梁斜拉桥在悬拼施工时,索梁锚固区斜向裂缝的开裂机理,从实际受力状态出发,分析了该区域桥面板剪应力和正应力的分布特点,并结合应力莫尔圆理论给出了裂缝成因及其形态特征;基于相关规范及桁架模型,提出了斜向配筋和L形配筋设计的抗裂措施;通过台州湾跨海大桥实例分析,验证了锚固区桥面板的应力分布特点与配筋方法的有效性。研究结果表明:悬拼施工时,锚固区桥面板的面内剪应力主要由拉索索力的竖向分力和水平分力提供,纵、横桥向正应力主要由吊重荷载引起的斜拉桥整体弯矩、拉索索力增加引起的局部负弯矩和局部承压提供;纵桥向正应力的增加是引起索梁锚固区主拉应力变大的主要原因,当主拉应力大于混凝土抗拉强度时,桥面板存在较大的斜向开裂风险;考虑到局部承压的作用,裂缝一般首先出现在索梁锚固点附近的桥面板顶部;当逐渐远离锚固区时,局部负弯矩及局部承压影响减小,桥面板顶板正应力减小,主拉应力减小,裂缝的发展方向与纵桥向夹角逐渐减小,同时,桥面板底板正应力由压应力变成拉应力,主拉应力增大,裂缝产生贯通的可能性增大;基于混凝土板斜向开裂的桁架模型,对索梁锚固区配置L形抗裂钢筋,顶板最大主拉应力降低了1.26 MPa,其中,纵桥向正应力最大可减小0.91 MPa,面内剪应力可减小0.50 MPa,即配置抗裂钢筋能够达到一定的抗弯和抗剪的效果。   相似文献   

8.
为改善钢-混组合梁负弯矩区混凝土易开裂缺点,引入工程水泥基复合材料(ECC)和超高性能混凝土(UHPC)代替普通混凝土(NC)形成钢-ECC/UHPC组合梁,展开了1片钢-NC组合梁、1片钢-ECC组合梁和2片钢-UHPC组合梁的负弯矩区静力试验;结合有限元分析方法对比了不同类型混凝土的应变、裂缝扩展与分布特点,分析了混凝土类型和配筋对钢-混组合梁破坏形态、承载能力与变形能力影响规律。研究结果表明:钢-混组合梁在负弯矩作用下整体协同工作性能良好,破坏形态均为弯曲破坏;ECC和UHPC裂缝呈现纤细的特点,ECC尤为明显;与钢-NC组合梁相比,钢-ECC组合梁和钢-UHPC组合梁的开裂荷载分别提高了2.00和2.75倍,抗弯刚度分别提高了17.23%和35.73%,抗弯承载力分别提高了9.00%和6.81%,表明UHPC抗裂能力更强,可以有效改善钢-混组合梁负弯矩区桥面板抗裂性能,ECC与UHPC代替NC可以提高钢-混组合梁的抗弯刚度和承载力;配筋与无筋钢-UHPC组合梁的开裂荷载和前期刚度无显著差异,无筋钢-UHPC组合梁破坏时形成贯通裂缝,其承载力相比配筋钢-UHPC组合梁下降了13....  相似文献   

9.
温度裂缝是混凝土结构中普遍存在的一种现象.主要是由于在混凝土硬化期间水泥放出大量水化热,内部温度不断上升,在表面产生拉应力。当拉应力超出混凝土的抗裂能力时即会出现裂缝。因此,掌握温度应力的变化规律,对于进行合理的结构设计和施工极为重要。  相似文献   

10.
针对连续组合梁桥负弯矩区桥面板易开裂的问题, 提出了新型钢-混组合梁负弯矩区 UHPC (Ultra-High Performance Concrete) 接缝方案。 使用 Abaqus 有限元软件对试验梁的加载过程进行模拟, 并验证了有限元建模方法的正确性, 分析了 UHPC 层内配筋率、 UHPC 龄期及钢梁下翼缘钢板厚度对结构抗弯性能的影响。 研究结果表明, 新型钢-混组合梁负弯矩区 UHPC 接缝结构具有技术先进性, 配筋率的增大可提高组合梁 UHPC 接缝结构的抗弯能力, UH? PC 龄期的变化主要影响抗裂性能, 而钢梁下翼缘厚度的改变对抗弯承载力的提高作用较为明显; 为充分发挥钢筋的受拉作用, 提高结构的极限承载力, 须采取一定措施防止钢梁提前屈曲。  相似文献   

11.
为了探求混凝土箱梁桥沥青混凝土铺装层在温度变化条件下引起开裂的破坏机理,采用现场监测与理论仿真模拟相结合的手段研究了沥青混凝土铺装层在低温、高温季节,以及夏季阵雨引起大幅降温等情况下的温度场分布及引起的温度应力,并与车辆荷栽作用下的沥青混凝土铺装层力学响应进行了对比分析.计算结果表明,沥青混凝土铺装层在大幅降温条件下产生的拉应力要明显大于日变化条件下的计算结果;由实测温度场得到的拉应力峰值出现在沥青混凝土铺装层表面;大幅降温引起的铺装层拉应力要大于车载作用下的计算结果;在沥青混凝土铺装层的设计中要重点考虑温度荷载的作用.  相似文献   

12.
通过监控某大桥高桥墩施工过程中不同位置的温度,得到了混凝土浇注初期、浇注完成及模板拆除后桥墩内部各测点的温度变化规律,利用ANSYS对试验高墩进行有限元仿真分析,得出混凝土水化热的温度应力云图和温度应力变化曲线,进一步分析了桥墩外表面和中心的温度应力变化规律。通过研究高桥墩在施工阶段水化热温度场的变化规律,为制定预防高桥墩混凝土表面开裂的措施提供依据。  相似文献   

13.
分析大跨度连续桥梁温度应力的影响,以拉日铁路雅鲁藏布江三号特大桥为例进行研究.采用Midas Civil计算软件,对箱型截面的大跨度桥梁成桥后,在温度梯度作用下,对梁体的最大应力进行分析计算.采用Midas FEA计算软件,分析箱型截面冬季施工养护期间,在箱体内部温度和高于外部温度的实测值下,分析单个现浇块体的应力值,为养护温度的设定提供参考依据.计算结果表明:温度对桥梁的应力影响较大,在西藏地区的温度变化快,温度较低的条件下,桥梁的抗裂能力能够满足当地气候条件.冬季施工期间,箱体内外养护温度差较大时会产生拉应力,必须合理的控制内外温度差和拉应力值,保证混凝土养护期间不开裂.  相似文献   

14.
针对某高速公路桥梁部分圆截面独柱墩顶部因螺旋钢筋缺失而开裂的情况,利用有限元软件ANSYS建立独柱墩模型,详细分析独柱墩在桥梁竖向荷载作用下其顶部混凝土表面的应力分布特征。通过计算分析,发现盆式支座下座板角点对应混凝土表面的竖向路径为最大主拉应力线的位置,且在桥梁最大竖向荷载作用下,有约17cm长度范围的混凝土主拉应力值超限。根据独柱墩顶部混凝土开裂的特点,选用预应力钢套管加固技术对该桥所有独柱墩进行维修加固。通过在ANSYS中对独柱墩加固区域表面施加均布压力来模拟钢套管对独柱墩的作用。结果表明,钢套管预应力的施加可有效减小独柱墩混凝土表面的主拉应力值,具有较好的维修加固效果。  相似文献   

15.
综述了无伸缩缝桥梁(简称“无缝桥”)技术发展,介绍了无缝桥优点、应用和研究热点,分析了无缝桥纵桥向受力特点、桩-土相互作用、台后土压力与抗震性能,指出了新技术研发与应用的现状与发展方向。分析结果表明:无缝桥技术受到许多国家的重视,已开展了大量的实桥监测和其他研究;在纵桥向受力方面,温度变形是其主因,现有规范中所给出的平均温差与实桥监测结果相差较大,应研究精度更高的计算方法;桩-土相互作用是整体桥受力的特点与研究的难点,在计算土抗力时,m法应限于小位移的无缝桥,位移较大时宜采用p-y曲线法;桥台桩基受力复杂,H型钢桩存在屈服、疲劳、屈曲的破坏可能,混凝土桩则易出现开裂病害;无缝桥温升时台后土压力增大,是研究的热点与难点,它随水平变形量和往复变形次数增大而增大的机理、量值和分布未达成共识,有待今后深入、系统的研究;纵桥向受力分析应建立全桥有限元模型,考虑结构-土相互作用和节点非线性性能;钢主梁受压稳定性和混凝土主梁抗裂性能是研究与设计的关键;引板是无缝桥的病害易发构件,面板式引板应减小板底摩阻力,避免开裂和末端沉降,而斜埋入式引板应控制其末端之上接线路面的隆起和下陷;许多无缝桥新技术已被提出并得到应用,今后还需深入研究,如:新材料与新构造在无缝桥各组成部分、台背、桩基与引板中的应用等;无缝桥具有较强的结构强健性、抗倒塌和防落梁能力,抗震研究已取得可喜的进展,但许多国家尚未形成相关的设计规定,应继续研究,为将来的应用和规范制订提供科学依据。   相似文献   

16.
混凝土结构抗裂性能差,开裂现象比较普遍。由于其组成材料、微观构造及所受外界因素影响的不同,开裂机理非常复杂。混凝土裂缝产生的原因很多,有变形引起的裂缝,有外载作用引起的裂缝,有养护环境不当和化学作用引起的裂缝等等。分析了混凝土产生裂缝的原因,可在工程实践中加以注意。  相似文献   

17.
为准确评估矩形钢管混凝土组合桁梁桥节点疲劳性能, 引入热点应力法, 可通过平面杆系模型、空间杆系模型和三维实体模型计算节点焊趾处的热点应力幅, 并通过对52个节点疲劳试验数据回归分析, 拟合得到热点应力幅-循环次数曲线; 选取陕西黄延高速一座矩形钢管混凝土组合桁梁桥为典型案例进行节点疲劳评估, 并对原有节点设计方案的构造进行优化。研究结果表明: 相比于墩顶矩形钢管混凝土节点, 跨中矩形钢管节点热点应力幅更大, 为60.1 MPa, 发生在主管表面, 但是小于欧洲规范Eurcode中的容许疲劳强度71 MPa, 满足疲劳设计要求; 对跨中疲劳易损节点进行设计构造优化, 原设计矩形钢管节点变为矩形钢管混凝土节点后, 管内混凝土改变了节点局部刚度, 使相贯线焊趾处应力分布均匀, 支、主管表面热点应力幅平均降低25.1%, 对原设计节点进行焊缝后处理, 可有效消除焊接初始拉应力, 改善节点疲劳性能, 支、主管表面热点应力幅平均降低14.9%;采用空间杆系模型对优化后的跨中矩形钢管混凝土节点进行疲劳评估, 支、主管表面最大热点应力幅分别为58.9、54.1 MPa, 大于三维实体模型计算得到的支管和主管表面最大热点应力幅45.2、47.1 MPa, 空间杆系模型计算结果偏保守, 且无法像三维实体模型一样准确计算不同热点位置的疲劳效应, 也无法准确判断疲劳开裂起始位置。   相似文献   

18.
根据混凝土箱形渡槽的温度边界特点,给出了箱形渡槽日照温差二次曲线分布形式;针对该日照温度梯度模式,按照温度自约束应力的平衡特点和等效线性化的原则,导出了混凝土箱形渡槽的温度应力的计算公式.对某渡槽的计算表明:日照作用下混凝土连续梁葙形渡槽沿槽身高度方向会产生较大的温差,在非线性温度梯度作用下中跨截面下缘和腹板区域将产生较大的拉应力,会降低截面抗裂性,应加强纵向预应力钢筋,提高其抗裂能力.  相似文献   

19.
吴鹏 《湖南交通科技》2021,47(3):102-105
大体积混凝土浇筑过程的水化热反应会对结构产生开裂等一系列不利影响,为了探究大体积混凝土水化热效应的温度场分布,以某高铁三线斜拉桥主墩八边形承台为工程实例,采用MIDAS/Civil对大体积承台浇筑后的温度场进行模拟,与实测结果进行对比分析,并据此制定一系列温控和保温措施.研究结果表明:大体积承台在水化热过程中温度变化遵循先急剧上升后缓慢下降规律,在浇筑后2~3d内达到温度峰值;承台温度的实测值与计算值吻合良好,故采用有限元模型可较好模拟水化热温度场;温度变化过程中的温差会使承台内部产生压应力,外部产生拉应力,当应力超过容许应力后会产生裂缝;采取内部降温、表面保温的温控措施可有效降低承台内部最高温度,降低开裂风险.  相似文献   

20.
大体积混凝土与普通混凝土的实质区别是由于混凝土中水泥水化要产生热量,大体积混凝土内部的热量不如表面的热量散失得快,造成内外温差过大,所产生的温度应力可能会使混凝土开裂。因此,控制内外温差,使其符合规范要求,是大体积混凝土施工的关键。结合阳翼高速北深沟特大桥拱座大体积混凝土施工实例,从施工准备、配合比设计、浇筑方案、温控措施等方面进行了阐述,以供同类型工程施工借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号