首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Long‐chain n‐3 polyunsaturated fatty acids (LC n‐3 PUFA) in the diet protect against insulin resistance and obesity. Fibroblast growth factor‐21 (Fgf21) is a hormonal factor released mainly by the liver that has powerful anti‐diabetic effects. Here, we tested whether the beneficial metabolic effects of LC n‐3 PUFA involve the induction of Fgf21. C57BL/6 J mice were exposed to an obesogenic, corn‐oil‐based, high‐fat diet (cHF), or a diet in which corn oil was replaced with a fish‐derived LC n‐3 PUFA concentrate (cHF + F) using two experimental settings: short‐term (3 weeks) and long‐term treatment (8 weeks). CHF + F reduced body weight gain, insulinemia, and triglyceridemia compared to cHF. cHF increased plasma Fgf21 levels and hepatic Fgf21 gene expression compared with controls, but these effects were less pronounced or absent in cHF + F‐fed mice. In contrast, hepatic expression of peroxisome proliferator‐activated receptor (PPAR)‐α target genes were more strongly induced by cHF + F than cHF, especially in the short‐term treatment setting. The expression of genes encoding Fgf21, its receptors, and Fgf21 targets was unaltered by short‐term LC n‐3 PUFA treatment, with the exception of Ucp1 (uncoupling protein 1) and adiponectin genes, which were specifically up‐regulated in white fat. In the long‐term treatment setting, the expression of Fgf21 target genes and receptors was not differentially affected by LC n‐3 PUFA. Collectively, our findings indicate that increased Fgf21 levels do not appear to be a major mechanism through which LC n‐3 PUFA ameliorates high‐fat‐diet‐associated metabolic disorders.  相似文献   

2.
Obesity is closely associated with low-grade chronic and systemic inflammation and dyslipidemia, and the consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) may modulate obesity-related disorders, such as inflammation and dyslipidemia. An emerging research question is to understand the dietary intervention strategy that is more important regarding n-3 PUFA consumption: (1) a lower ratio of n-6/n-3 PUFAs or (2) a higher amount of n-3 PUFAs consumption. To understand the desirable dietary intervention method of n-3 PUFAs consumption, we replaced lard from the experimental diets with either perilla oil (PO) or corn oil (CO) to have identical n-3 amounts in the experimental diets. PO had a lower n-6/n-3 ratio, whereas CO contained higher amounts of PUFAs; it inherently contained relatively lower n-3 but higher n-6 PUFAs than PO. After the 12-week dietary intervention in ob/ob mice, dyslipidemia was observed in the normal chow and CO-fed ob/ob mice; however, PO feeding increased the high density lipoprotein-cholesterol (HDL-C) level; further, not only did the HDL-C level increase, the low density lipoprotein-cholesterol (LDL-C) and triglyceride (TG) levels also decreased significantly after lipopolysaccharide (LPS) injection. Consequently, extra TG accumulated in the liver and white adipose tissue (WAT) of normal chow- or CO-fed ob/ob mice after LPS injection; however, PO consumption decreased serum TG accumulation in the liver and WAT. PUFAs replacement attenuated systemic inflammation induced by LPS injection by increasing anti-inflammatory cytokines but inhibiting pro-inflammatory cytokine production in the serum and WAT. PO further decreased hepatic inflammation and fibrosis in comparison with the ND and CO. Hepatic functional biomarkers (aspartate aminotransferase (AST) and alanine transaminase (ALT) levels) were also remarkably decreased in the PO group. In LPS-challenged ob/ob mice, PO and CO decreased adipocyte size and adipokine secretion, with a reduction in phosphorylation of MAPKs compared to the ND group. In addition, LPS-inducible endoplasmic reticulum (ER) and oxidative stress decreased with consumption of PUFAs. Taken together, PUFAs from PO and CO play a role in regulating obesity-related disorders. Moreover, PO, which possesses a lower ratio of n-6/n-3 PUFAs, remarkably alleviated metabolic dysfunction in LPS-induced ob/ob mice. Therefore, an interventional trial considering the ratio of n-6/n-3 PUFAs may be desirable for modulating metabolic complications, such as inflammatory responses and ER stress in the circulation, liver, and/or WAT.  相似文献   

3.
(1) Background: A growing body of literature suggest that polymorphisms (SNPs) from inflammation-related genes could possibly play a role in cytokine production and then interact with dietary n-3 fatty acids (FAs) to modulate inflammation. The aim of the present study was to test whether gene expression of selected inflammatory genes was altered following an n-3 PUFA supplementation and to test for gene–diet interactions modulating plasma inflammatory biomarker levels. (2) Methods: 191 subjects completed a 6-week n-3 FA supplementation with 5 g/day of fish oil. Gene expression of TNF-α and IL6 was assessed in peripheral blood mononuclear cells (PBMCs) using the TaqMan technology. Genotyping of 20 SNPs from the TNF-LTA gene cluster, IL1β, IL6 and CRP genes was performed. (3) Results: There was no significant reduction of plasma IL-6, TNF-α and C-reactive protein (CRP) levels after the 6-week fish oil supplementation. TNF-α and IL6 were slightly overexpressed in PBMCs after the supplementation (fold changes of 1.05 ± 0.38 and 1.18 ± 0.49, respectively (n = 191)), but relative quantification (RQ) within the −0.5 to 2.0 fold are considered as nonbiologically significant. In a MIXED model for repeated measures adjusted for the effects of age, sex and BMI, gene by supplementation interaction effects were observed for rs1143627, rs16944, rs1800797, and rs2069840 on IL6 levels, for rs2229094 on TNF-α levels and for rs1800629 on CRP levels (p < 0.05 for all). (4) Conclusions: This study shows that a 6-week n-3 FA supplementation with 5 g/day of fish oil did not alter gene expression levels of TNF-α and IL6 in PBMCs and did not have an impact on inflammatory biomarker levels. However, gene–diet interactions were observed between SNPs within inflammation-related genes modulating plasma inflammatory biomarker levels.  相似文献   

4.
The topical application of aspirin and omega-3 polyunsaturated fatty acids (PUFAs) may trigger the resolution of inflammation by inducing the biosynthesis of pro-resolvers such as lipoxins and resolvins while also avoiding the side effects of systemic aspirin intake. This study assessed the effect of enhanced granulation tissue (EGT) on periodontal tissue regeneration through the local application of aspirin and omega-3 PUFAs directly to granulation tissue (GT) during periodontal surgery. This randomized controlled experiment assesses 38 pockets in 19 patients. In every patient, two similar intrabony periodontal defects are treated with an open flap debridement, one with EGT (GT extracted, enhanced with aspirin and omega-3 PUFAs, and replaced) and the other with standard GT removal. Clinical attachment level (CAL) and probing pocket depth (PPD) are assessed at baseline and 2 and 6 months after surgery. The experimental protocol (EGT) results in a greater CAL gain as compared to that in the controls at 6 months (p < 0.05), while PPD reduction is not affected. The retained GT does not compromise healing. EGT is proposed as a promising, inexpensive, and simple method that may improve the outcome of periodontal regenerative treatment. However, the described protocol requires optimization and further assessment. Practical Applications : The biosynthesis of mediators including resolvins and lipoxins triggered by aspirin and omega-3 PUFAs promote the resolution of inflammation, eventually leading to faster regeneration of inflamed tissues. While granulation tissue is a necessary component in wound healing, enhancing granulation tissue with aspirin and omega-3 PUFAs results in CAL gain in the surgical treatment of periodontal defects. Retained granulation tissue does not compromise periodontal healing. The EGT strategy is an inexpensive and simple method that may improve the clinical outcomes of regenerative periodontal procedures.  相似文献   

5.
Maternal intake of omega-3 (n-3 PUFAs) and omega-6 (n-6 PUFAs) polyunsaturated fatty acids impacts hippocampal neurogenesis during development, an effect that may extend to adulthood by altering adult hippocampal neurogenesis (AHN). The n-3 PUFAs and n-6 PUFAs are precursors of inflammatory regulators that potentially affect AHN and glia. Additionally, n-3 PUFA dietary supplementation may present a sexually dimorphic action in the brain. Therefore, we postulated that dietary n-6/n-3 PUFA balance shapes the adult DG in a sex-dependent manner influencing AHN and glia. We test our hypothesis by feeding adult female and male mice with n-3 PUFA balanced or deficient diets. To analyze the immunomodulatory potential of the diets, we injected mice with the bacterial endotoxin lipopolysaccharide (LPS). LPS reduced neuroblast number, and its effect was exacerbated by the n-3 PUFA-deficient diet. The n-3 PUFA-deficient diet reduced the DG volume, AHN, microglia number, and surveilled volume. The diet effect on most mature neuroblasts was exclusively significant in female mice. Colocalization and multivariate analysis revealed an association between microglia and AHN, as well as the sexual dimorphic effect of diet. Our study reveals that female mice are more susceptible than males to the effect of dietary n-6/n-3 PUFA ratio on AHN and microglia.  相似文献   

6.
Long-chain polyunsaturated fatty acids (LCPUFA), essential molecules whose precursors must be dietary supplied, are highly represented in the brain contributing to numerous neuronal processes. Recent findings have demonstrated that LCPUFA are represented in lipid raft microstructures, where they favor molecular interactions of signaling complexes underlying neuronal functionality. During aging, the brain lipid composition changes affecting the lipid rafts’ integrity and protein signaling, which may induce memory detriment. We investigated the effect of a n-3 LCPUFA-enriched diet on the cognitive function of 6- and 15-months-old female mice. Likewise, we explored the impact of dietary n-3 LCPUFAs on hippocampal lipid rafts, and their potential correlation with aging-induced neuroinflammation. Our results demonstrate that n-3 LCPUFA supplementation improves spatial and recognition memory and restores the expression of glutamate and estrogen receptors in the hippocampal lipid rafts of aged mice to similar profiles than young ones. Additionally, the n-3 LCPUFA-enriched diet stabilized the lipid composition of the old mice’s hippocampal lipid rafts to the levels of young ones and reduced the aged-induced neuroinflammatory markers. Hence, we propose that n-3 LCPUFA supplementation leads to beneficial cognitive performance by “rejuvenating” the lipid raft microenvironment that stabilizes the integrity and interactions of memory protein players embedded in these microdomains.  相似文献   

7.
Obesity manifests itself with low-grade chronic inflammation that shapes immune responses during infection. Albeit obese individuals are at risk of higher mortality due to comorbidities, they are better protected from systemic inflammation. Recently, we showed that in the vasculature of obese mice kept on high-fat diet (HFD), neutrophils produce less neutrophil extracellular traps (NETs) than in lean controls (normal diet, ND). NETs are used by neutrophils to counteract severe infection, but they also cause collateral damage. Hardly anything is known about metabolic requirements for their formation, especially in the context of obesity and/or sepsis. Thus, we aimed to study the immunometabolism of NET formation by application of ex vivo neutrophil analyses (Seahorse analyzer, selective inhibitors, confocal imaging) and intravital microscopy. The obtained data show that glycolysis and/or pentose phosphate pathway are involved in NETs release by ND neutrophils in both physiological and inflammatory conditions. In contrast, such cells of septic HFD mice utilize these routes only to spontaneously cast NETs, while after secondary ex vivo activation they exhibit so called “exhausted phenotype”, which manifests itself in diminished NET release despite high glycolytic potential and flexibility to oxidize fatty acids. Moreover, impact of ATP synthase inhibition on NET formation is revealed. Overall, the study shows that the neutrophil potential to cast NETs depends on both the metabolic and inflammatory state of the individual.  相似文献   

8.
Algae high in docosahexaenoic acid (DHA) may provide a source of long‐chain omega‐3 polyunsaturated fatty acids (LCn‐3PUFA) for inclusion in the diet of lambs to improve the LCn‐3PUFA status of meat. The effect of background LCn‐3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA‐Gold? algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n‐3 or n‐6 around conception. LCn‐3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p < 0.001) lower when lambs received the ration for 14 days compared with pre‐feeding concentrations. The concentrations of EPA and DHA were also significantly (p < 0.001) higher when lambs consumed the Algae ration compared with the control ration for 42 days. The increase in EPA and DHA was, however, significantly (p < 0.05) lower if lamb dams had previously been fed a diet high in n‐6 at conception. Assessing the previous nutrition and n‐3 status of lambs may allow producers to more accurately predict the likely response to supplements high in LCn‐3PUFA, particularly, DHA.  相似文献   

9.
Adipose tissue expansion is strongly associated with increased adipose macrophage infiltration and adipocyte-derived pro-inflammatory cytokines, contributing to obesity-associated low-grade inflammation. Individuals with vitamin D deficiency have an increased prevalence of obesity and increased circulating inflammatory cytokines. However, the effect of vitamin D supplementation on obesity-induced inflammation remains controversial. Male C57BL/6J mice received a low-fat (10% fat) or high-fat (HF, 60% fat diet) containing 1000 IU vitamin D/kg diet, or HF supplemented with 10,000 IU vitamin D/kg diet for 16 weeks (n = 9/group). Vitamin D supplementation did not decrease HF-increased body weight but attenuated obesity-induced adipose hypertrophy and macrophage recruitment as demonstrated by the number of crown-like structures. Vitamin D supplementation significantly reduced the mRNA expression of CD11c, CD68, and iNOS, specific for inflammatory M1-like macrophages, and decreased serum levels of NO. In addition, significant reductions in pro-inflammatory gene expression of IL-6, MCP-1, and TNFα and mRNA levels of ASC-1, CASP1, and IL-1β involved in NLRP3 inflammasome were found in obese mice supplemented with vitamin D. Vitamin D supplementation significantly increased obesity-decreased AMPK activity and suppressed HF-increased NF-κB phosphorylation in adipose tissue from obese mice. These observed beneficial effects of vitamin D supplementation on adipose tissue expansion, macrophage recruitment, and inflammation might be related to AMPK/NF-κB signaling.  相似文献   

10.
11.
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.  相似文献   

12.
The effects of supplementing diets with n‐3 alpha‐linolenic acid (ALA) and docosahexaenoic acid (DHA) on plasma metabolites, carcass yield, muscle n‐3 fatty acids and liver messenger RNA (mRNA) in lambs were investigated. Lambs (n = 120) were stratified to 12 groups based on body weight (35 ± 3.1 kg), and within groups randomly allocated to four dietary treatments: basal diet (BAS), BAS with 10.7 % flaxseed supplement (Flax), BAS with 1.8 % algae supplement (DHA), BAS with Flax and DHA (FlaxDHA). Lambs were fed for 56 days. Blood samples were collected on day 0 and day 56, and plasma analysed for insulin and lipids. Lambs were slaughtered, and carcass traits measured. At 30 min and 24 h, liver and muscle samples, respectively, were collected for determination of mRNA (FADS1, FADS2, CPT1A, ACOX1) and fatty acid composition. Lambs fed Flax had higher plasma triacylglycerol, body weight, body fat and carcass yield compared with the BAS group (P < 0.001). DHA supplementation increased carcass yield and muscle DHA while lowering plasma insulin compared with the BAS diet (P < 0.01). Flax treatment increased (P < 0.001) muscle ALA concentration, while DHA treatment increased (P < 0.001) muscle DHA concentration. Liver mRNA FADS2 was higher and CPT1A lower in the DHA group (P < 0.05). The FlaxDHA diet had additive effects, including higher FADS1 and ACOX1 mRNA than for the Flax or DHA diet. In summary, supplementation with ALA or DHA modulated plasma metabolites, muscle DHA, body fat and liver gene expression differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号