首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Previous results have shown that high rate codes tend to yield a lower average bit-error rate than low rate codes when employing a minimum mean-square error (MMSE) receiver for a direct-sequence code-division multiple-access (CDMA) system in either an additive white Gaussian noise channel or a flat Rayleigh fading channel. we consider the use of larger signal constellations with both trellis-coded modulation and bit-interleaved coded modulation (BICM) to determine if further gains can be achieved in either the Rayleigh or Ricean fading channel. The average bit-error probability is derived for both coding schemes using the general Ricean fading channel model, based upon the common assumptions of infinite interleaving, perfect channel state information, and optimal MMSE receiver coefficients. New bounds are presented for BICM with 8-PSK and 16-QAM symbols, which take advantage of the symmetries inherent in the signal constellations with Gray code mapping. In addition, simulation results are presented which show the important effect a finite interleaving delay constraint has on the comparison of various codes. The results show that there are cases when coded modulation does yield a significant improvement in performance for a CDMA system using an MMSE receiver, compared to standard convolutional coding. However, the best coding strategy depends upon several factors, including the nature of the fading process (Rayleigh or Ricean), the operating signal-to-noise ratio, the interleaving delay constraint, the time-variability of the channel, the number of users in the system, and the severity of the near-far problem.  相似文献   

2.
The performance of a turbo-coded code division multiaccess system with a minimum mean-square error (MMSE) receiver for interference suppression is analyzed on a Rayleigh fading channel. In order to accurately estimate the performance of the turbo coding, two improvements are proposed on the conventional union bounds: the information of the minimum distance of a particular turbo interleaver is used to modify the average weight spectra, and the tangential bound is extended to the Rayleigh fading channel. Theoretical results are derived based on the optimum tap weights of the MMSE receiver and maximum-likelihood decoding. Simulation results incorporating iterative decoding, RLS adaptation, and the effects of finite interleaving are also presented. The results show that in the majority of the scenarios that we are concerned with, the MMSE receiver with a rate-1/2 turbo code will outperform a rate-1/4 turbo code. They also show that, for a bit error rate lower than 10-3, the capacity of the system is increased by using turbo codes over convolutional codes, even with small block sizes  相似文献   

3.
This paper investigates the use of convolutional coding in space-time minimum mean-square-error (MMSE) multiuser-based receivers over asynchronous multipath Rayleigh fading channels. We focus on the performance gain attained through error control coding when used with binary-phase-shift-keyed modulation (BPSK) and multiuser access based on direct sequence-code-division multiple access (DS-CDMA). In our analysis, we derive an approximation for the uncoded probability of bit-error in multipath fading channels. This bit-error rate (BER) approximation is shown to be very accurate when compared to the exact performance. For a convolutionally coded system, we obtain a closed form expression for the bit-error rate upper bound. This error bound is noted to be tight as the number of quantization levels increased beyond eight. Using our theoretical results, we obtain an estimate for the achieved user-capacity that accrues due to error control coding. It is found that using convolutional coding with 3-bit soft-decision decoding, a user-capacity gain as much as 300% can easily be achieved when complete fading state information plus ideal channel interleaving are assumed.  相似文献   

4.
智能天线中一般的MMSE接收机缺乏有效跟踪Rayleigh衰落信道变化的机制。在分析了MMSE接收机在Rayleigh信道中的特点之后,提出了一种新型的MMSE接收机。计算机仿真结果表明,此接收机性能较好,适用于Rayleigh衰落信道。  相似文献   

5.
While rapid variations of the fading channel cause intercarrier interference (ICI) in orthogonal frequency-division multiplexing (OFDM), thereby degrading its performance considerably, they also introduce temporal diversity, which can be exploited to improve performance. We first derive a matched-filter bound (MFB) for OFDM transmissions over doubly selective Rayleigh fading channels, which benchmarks the best possible performance if ICI is completely canceled without noise enhancement. We then derive universal performance bounds which show that the time-varying channel causes most of the symbol energy to be distributed over a few subcarriers, and that the ICI power on a subcarrier mainly comes from several neighboring subcarriers. Based on this fact, we develop low-complexity minimum mean-square error (MMSE) and decision-feedback equalizer (DFE) receivers for ICI suppression. Simulations show that the DFE receiver can collect significant gains of ICI-impaired OFDM with affordable complexity. In the relatively low Doppler frequency region, the bit-error rate of the DFE receiver is close to the MFB.  相似文献   

6.
We derive the analytical bit-error rate (BER) expressions for a fast frequency-hopped binary frequency-shift keying self-normalizing receiver over a fading channel with the worst-case band multitone jamming (MTJ) and additive white Gaussian noise (AWGN). The desired signal and MTJ are assumed to undergo independent Rician fading and our analyses, validated with simulation results, show that the system performance is not sensitive to different types of MTJ fading conditions. The self-normalizing receiver is found to be superior to the linear-combining receiver when the signal amplitude does not experience severe fading, while the converse is true under Rayleigh fading signal conditions. Under a Rician fading channel and AWGN conditions, the worst-case MTJ and the worst-case partial-band noise jamming are shown to have similar effects on the BER performance of the self-normalizing receiver with diversity  相似文献   

7.
The Shannon capacity of a fading channel under an average-power constraint with channel side information at the transmitter and receiver is only negligibly larger than the capacity of the same channel when constant-power transmission is employed. However, power adaptation has been shown to be quite useful in practical systems, where it has been conjectured that it allows for compensation of the effect of rate quantization. Here, an average bit-error probability constraint is employed instead of the conventional instantaneous bit-error probability constraint. When the set of rates available to the transmitter is unrestricted in practical systems, necessary conditions for jointly optimal power and rate allocation are derived and used to demonstrate that power adaptation is of limited utility. However, when the rates available to the transmitter are restricted to the nonnegative integers for the example of uncoded quadrature amplitude modulation over frequency-nonselective Rayleigh fading channels, a 0.5-0.75 dB loss in power efficiency is incurred when employing only a single power level for each constellation, and a 0.5-bits/symbol loss in rate is incurred when constant power transmission is employed.  相似文献   

8.
We consider the design of power-adaptive systems for minimizing the average bit-error rate over flat fading channels. Channel state information, obtained through estimation at the receiver, is sent to the transmitter over a feedback channel, where it is used to optimally adapt the transmit power. We consider finite-state optimal policies to reflect the limitations of the feedback channel. We develop an iterative algorithm that determines the optimal finite-state power control policy given the probability density function (PDF) of the fading. Next, we present a discretized formulation of the problem and obtain a suboptimal solution via standard dynamic programming techniques. The discretization of the problem enables us to obtain a suboptimal policy for arbitrary fading channels for which the analytic expression of the fading probability density function is not available. Simulation results are used to draw conclusions regarding the effects of limited feedback channel capacity, delay and number of states on the bit-error rate performance of the proposed policies under slow and moderate fading conditions  相似文献   

9.
We consider power adaptation strategies for binary phase-shift keying signals in Rayleigh fading channels under the assumption that channel state information is provided at both the transmitter and the receiver. We first derive a closed-form expression for the optimal power adaptation that minimizes average bit-error rate (BER) subject to average and peak transmission power constraints. Then, we analyze the average BER for channel inversion power adaptation with the same constraints. Our results show that the performance difference between the optimal power adaptation and the channel inversion becomes negligibly small as available average transmission power increases and/or peak-to-average power ratio decreases. We also find that an optimal peak-to-average power ratio exists that minimizes the average BER in the channel inversion scheme.  相似文献   

10.
The bit-error rate (BER) performance of multilevel quadrature amplitude modulation with pilot-symbol-assisted modulation channel estimation in static and Rayleigh fading channels is derived, both for single branch reception and maximal ratio combining diversity receiver systems. The effects of noise and estimator decorrelation on the received BER are examined. The high sensitivity of diversity systems to channel estimation error is investigated and quantified. The influence of the pilot-symbol interpolation filter windowing is also considered.  相似文献   

11.
A new technique for iterative decoding of parallel concatenated convolutional (turbo) codes (PCCCs) for the correlated fast Rayleigh fading channel is proposed and evaluated. This technique is based upon the use of a multiple differential detector (MDD) receiver structure which exploits the statistical characteristics of the fading process to overcome the effects of the rapid phase and amplitude variations. Since traditional MDD receivers cannot be used with PCCCs because they do not produce soft output and are not compatible with channel interleaving, a novel MDD receiver structure is derived which overcomes these shortfalls. In addition, with careful use of extrinsic information related to the a posteriori probability distribution function of the transmitted symbols, the receiver is designed in such a fashion as to allow channel estimation to improve with each iteration. Evaluation of the proposed receiver by means of computer simulation has shown dramatic performance improvements in fast Rayleigh fading channels as compared to long constraint-length conventional convolutional codes using both single and traditional MDD receiver structures  相似文献   

12.
Due to the receiver complexity introduced by interleaving, the implementation of maximum likelihood (IML) decoding of interleaved coded signals transmitted over frequency nonselective Rayleigh fading channels has been shown to be practically impossible. As an alternative, a two-stage receiver structure has been proposed, where the channel estimation and sequence decoding are done separately. The channel estimation issue in a two-stage receiver is examined in detail in this paper. It is shown that although an optimum (maximum a posteriori (MAP)) channel estimation is not possible in practice, it can be approached asymptotically by joint MAP estimation of the channel and the coded data sequence. The implementation of the joint MAP estimation is shown to be an ML sequence estimator followed by an minimum mean-square error (MMSE) channel estimator. Approximate fill sequence estimation using pilot symbol interpolation is also studied, and through computer simulations, its performance is compared to receivers using hit sequence estimation. The effect of decision delay (DD), prediction order, and pilot insertion rate (PIR) on the reduced complexity ML sequence estimation is investigated as well. Finally, a practical receiver is proposed that makes the best compromise among the error performance, receiver complexity, DD, and power (or bandwidth) expansion due to pilot insertion  相似文献   

13.
An adaptive multipath decorrelating multiuser receiver is considered for application in Rayleigh fading multipath channels with significant Doppler spread. Coherent diversity combining is performed using adaptively obtained channel estimates in a manner that minimizes the impact of estimation errors on data detection. The bit-error rate of the receiver is evaluated analytically, showing dependence on the fading rate of the channel and tracking capabilities of adaptive least mean square and recursive least square algorithms, in addition to the order of multipath diversity and the number of active code-division multiple-access users  相似文献   

14.
Pilot-symbol-assisted modulation system using feedback minimum mean-square error (MMSE) power control in subject to an unavoidable feedback delay, and in conjunction with diversity, is considered over a slow Rayleigh fading channel. Feedback MMSE power control is defined as a power-control function, with feedback MMSE predictions of the current channel fading gains as input that minimizes the system-error probability. The use of feedback requires causality, and an MMSE predictor has to be employed for the purpose of power control. Previously, in the literature, the predictor was used also in detection. The pilot-symbol system with MMSE power control is shown to achieve a clear performance improvement by employing a smoother, instead of the predictor, in detection. Furthermore, the performance loss caused by a feedback delay of 10%-20% from the channel coherence time appeared to be minor with reasonable bit-error rate levels. Finally, additional performance improvement using low-order diversity was shown to be considerable.  相似文献   

15.
Diversity combining with imperfect channel estimation   总被引:1,自引:0,他引:1  
The optimal diversity-combining technique is investigated for a multipath Rayleigh fading channel with imperfect channel state information at the receiver. Applying minimum mean-square error channel estimation, the channel state can be decomposed into the channel estimator spanned by channel observation, and the estimation error orthogonal to channel observation. The optimal combining weight is obtained from the first principle of maximum a posteriori detection, taking into consideration the imperfect channel estimation. The bit-error performance using the optimal diversity combining is derived and compared with that of the suboptimal application of maximal ratio combining. Numerical results are presented for specific channel models and estimation methods to illustrate the combined effect of channel estimation and detection on bit-error rate performance.  相似文献   

16.
A receiver structure for unknown time-varying, frequency-flat, Rayleigh fading channels is proposed. Unlike the maximum-likelihood receiver structure, this receiver does not need any knowledge of the channel autocovariance or the received signal-to-noise ratio, and yet analytic and simulation results show, that its bit-error rate performance is close to the optimal structure. The receiver is applicable to signals with constant or approximately constant envelopes or to linearly modulated signals using Nyquist pulses  相似文献   

17.
The use of rate-compatible punctured turbo and rate-compatible punctured convolutional (RCPT/RCPC) codes as channel codes in a direct-sequence code-division multiple-access system where the system bandwidth expansion is fixed is investigated. The best RCPC and RCPT code rate in terms of maximizing the system spectral efficiency and minimizing the optimal power allocation where the receiver is either a matched filter (MF) or a minimum mean-square error (MMSE) device is assessed. It is shown that for the MF receiver, the coding-spreading tradeoff favors a code-rate reduction. In the case of the MMSE receiver, when the E/sub b//N/sub 0/ value and the system load are increased, the best code rate also increases. By examining the slope of the performance curves, it is deduced that, under similar operating conditions, the best code rate of the RCPT codes is lower than that of the RCPC codes. Also, the best code rate for a Rayleigh fading channel is lower than that for an additive white Gaussian noise channel.  相似文献   

18.
The authors consider minimum error probability detection of a data sequence transmitted using linear-suppressed carrier modulations, specifically phase-shift keying (PSK), over the Gaussian channel with slow nonselective Rayleigh fading. Complete channel interleaving/deinterleaving and diversity reception are assumed. The problem is considered with application to Viterbi decoding in particular. It is first shown that the two presently available receivers, namely, the conventional maximum likelihood (ML) receiver and the simultaneous estimation receiver, do not perform adequately for this problem. A two-stage receiver is proposed in which the unknown channel fading gains are estimated in the first stage prior to data sequence estimation in the second stage. This receiver is shown to perform adequately, and leads to an efficient receiver/decoder for Viterbi decoding of convolutionally trellis-coded sequences. The issue of optimum estimation of channel fading gains is clarified. The bit error probability of the receiver/decoder is analyzed, and numerical performance results are presented  相似文献   

19.
The deployment of channel coding and interleaving to enhance the bit-error performance of a satellite mobile radio channel is addressed for speech and data transmissions. Different convolutional codes (CC) using Viterbi decoding with soft decision are examined with inter-block interleaving. Reed-Solomon (RS) codes with Berlekamp-Massey hard decision decoding or soft decision trellis decoding combined with block interleaving are also investigated. A concatenated arrangement employing RS and CC coding as the outer and inner coders, respectively, is used for transmissions via minimum shift keying (MSK) over Gaussian and Rayleigh fading channels. For an interblock interleaving period of 2880 bits, a concatenated arrangement of an RS(48,36). over the Galois field GF(256) and punctured PCC(3,1,7) yielding an overall coding rate of 1/2, provides a coding gain of 42dB for a BER of 10?6, and an uncorrectable error detection probability of 1–10?9.  相似文献   

20.
We investigate the effects of correlation on the performance of diversity systems in wideband wireless radio environments. Specifically, the average bit error rate (BER) performance of M-ary differential phase shift keying (MDPSK) on correlated frequency-selective slow Rayleigh fading channels is analyzed. A two-branch diversity receiver with postdetection equal gain combining is considered. Nyquist pulse shaping is used and differential detection is employed at the receiver. The effects of cochannel interference on the system performance are assessed using a Gaussian interference model. To further enhance the system performance, the effects of combined diversity and forward error correction (FEC) coding on the average BER are investigated. Results using short cyclic block codes with perfect bit interleaving are obtained. The effects of the root mean square (RMS) delay spread, the amount of correlation, and the level of modulation, M, on the average BER are investigated in detail for both coded and uncoded systems. The results show that dual branch diversity combining with a correlation coefficient of 0.5 outperforms (in terms of BER) short block codes with perfect bit interleaving, and that combined diversity and coding strategies are effective in combatting the effects of frequency-selective fading  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号