首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the first section of this article a new method for computing the densities of integrals of motion for the KdV equation is given. In the second section the variation with respect to q of the functional ∫ 0 π w (x,t,x,;q)dx (t is fixed) is computed, where W(x, t, s; q) is the Riemann function of the problem $$\begin{gathered} \frac{{\partial ^z u}}{{\partial x^2 }} - q(x)u = \frac{{\partial ^2 u}}{{\partial t^2 }} ( - \infty< x< \infty ), \hfill \\ u|_{t = 0} = f(x), \left. {\frac{{\partial u}}{{\partial t}}} \right|_{t = 0} = 0. \hfill \\ \end{gathered} $$   相似文献   

2.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

3.
For a linear differential equation of the type (1) $$\frac{{dx}}{{dt}} = A_0 x(t) + A_1 x(t - \Delta _1 ) + ... + A_n x(t - \Delta _n )$$ we establish the followingTHEOREM. If $$\overline {\left| {z_1 } \right| = ...\underline{\underline \cup } \left| z \right|_n = 1\sigma \left( {A_0 + \sum\nolimits_{k = 1}^n {z_k A_k } } \right)} \subset \left\{ {\lambda :\operatorname{Re} \lambda< 0} \right\}$$ then system (1) is absolutely asymptotically stable.  相似文献   

4.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

5.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

6.
Let \({A=\{x\in \mathbb{R}^{2m}: 0 < a < |x| < b\}}\) be an annulus. We consider the following singularly perturbed elliptic problem on A $$\left\{\begin{array}{lll}-\varepsilon ^2{\Delta u} + |x|^{\eta}u =|x|^{\eta}u^p, \quad {\rm in} A,\\ u > 0, \quad \quad \quad \quad \quad \quad \quad {\rm in} A, \\ u=0, \quad \quad \quad \quad \quad \quad \quad {\rm on}\partial A,\end{array}\right. $$ where \({1 < p < \frac{m+3}{m-1}}\) . We shall prove the existence of a positive solution \({u_\epsilon }\) which concentrates on two different orthogonal spheres of dimension (m?1) as \({\varepsilon \to 0}\) . We achieve this by studying a reduced problem on an annular domain in \({\mathbb{R}^{m+1}}\) and analysing the profile of a two point concentrating solution in this domain.  相似文献   

7.
In a bounded domain of the n -dimensional (n?2) space one considers a class of degenerate quasilinear elliptic equations, whose model is the equation $$\sum\limits_{i = 1}^n {\frac{{\partial F}}{{\partial x_i }}} (a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i - 2} u_{x_i } ) = f(x),$$ where x =(x1,..., xr), li?0, mi>1, the function f is summable with some power, the nonnegative continuous function a(u) vanishes at a finite number of points and satisfies \(\frac{{lim}}{{\left| u \right| \to \infty }}a(u) > 0\) . One proves the existence of bounded generalized solutions with a finite integral $$\int\limits_\Omega {\sum\limits_{i = 1}^n {a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i } dx} }$$ of the Dirichlet problem with zero boundary conditions.  相似文献   

8.
We consider degenerate parabolic equations of the form $$\left. \begin{array}{ll}\,\,\, \partial_t u = \Delta_\lambda u + f(u) \\u|_{\partial\Omega} = 0, u|_{t=0} = u_0\end{array}\right.$$ in a bounded domain ${\Omega\subset\mathbb{R}^N}$ , where Δλ is a subelliptic operator of the type $$\quad \Delta_\lambda:= \sum_{i=1}^{N} \partial_{x_i}(\lambda_{i}^{2} \partial_{x_i}),\qquad \lambda = (\lambda_1,\ldots, \lambda_N).$$ We prove global existence of solutions and characterize their longtime behavior. In particular, we show the existence and finite fractal dimension of the global attractor of the generated semigroup and the convergence of solutions to an equilibrium solution when time tends to infinity.  相似文献   

9.
The class of equations of the type (1) $$\partial u/\partial t - div\overrightarrow a (u,\nabla u) = f,$$ such that (2) $$\begin{array}{l} \overrightarrow a (u,p) \cdot p \ge v_0 |u|^l |p|^m - \Phi _0 (u), \\ |\overrightarrow a (u,p)| \le \mu _1 |u|^l |p|^{m - 1} + \Phi _1 (u) \\ \end{array}$$ with some m ∈ (1,2), l≥0, and Φ i (u)≥0 is studied. Similar equations arise in the study of turbulent filtration of gas or liquid through porous media. Existence and uniqueness in some class of Hölder continuous generalized solutions of the Cauchy-Dirichlet problem for equations of the type (1), (2), is proved. Bibliography: 9 titles.  相似文献   

10.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

11.
This paper is concerned with the existence and concentration properties of the ground state solutions to the following coupled Schrödinger systems $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)G_{v}(z)~\hbox { in }\ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)G_{u}(z)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ and $$\begin{aligned} \left\{ \begin{array}{l} -\varepsilon ^2\varDelta u+u+V(x)v=W(x)(G_{v}(z)+|z|^{2^*-2}v)~\hbox {in } \ {\mathbb {R}}^N,\\ -\varepsilon ^2\varDelta v+v+V(x)u=W(x)(G_{u}(z)+|z|^{2^*-2}u)~\hbox {in } \ {\mathbb {R}}^N,\\ u(x)\rightarrow 0\ \hbox {and }v(x)\rightarrow 0\ \hbox {as } \ |x|\rightarrow \infty , \end{array} \right. \end{aligned}$$ where \(z=(u,v)\in {\mathbb {R}}^2\) , \(G\) is a power type nonlinearity, having superquadratic growth at both \(0\) and infinity but subcritical, \(V\) can be sign-changing and \(\inf W>0\) . We prove the existence, exponential decay, \(H^2\) -convergence and concentration phenomena of the ground state solutions for small \(\varepsilon >0\) .  相似文献   

12.
In this paper, we obtain bounds for the decay rate in the L r (? d )-norm for the solutions of a nonlocal and nonlinear evolution equation, namely, $$u_t \left( {x,t} \right) = \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( {y,t} \right) - u\left( {x,t} \right)} \right|^{p - 2} \left( {u\left( {y,t} \right) - u\left( {x,t} \right)} \right)dy, x \in \mathbb{R}^d , t > 0.}$$ . We consider a kernel of the form K(x, y) = ψ(y?a(x)) + ψ(x?a(y)), where ψ is a bounded, nonnegative function supported in the unit ball and a is a linear function a(x) = Ax. To obtain the decay rates, we derive lower and upper bounds for the first eigenvalue of a nonlocal diffusion operator of the form $$T\left( u \right) = - \int_{\mathbb{R}^d } {K\left( {x,y} \right)\left| {u\left( y \right) - u\left( x \right)} \right|^{p - 2} \left( {u\left( y \right) - u\left( x \right)} \right)dy, 1 \leqslant p < \infty .}$$ . The upper and lower bounds that we obtain are sharp and provide an explicit expression for the first eigenvalue in the whole space ? d : $$\lambda _{1,p} \left( {\mathbb{R}^d } \right) = 2\left( {\int_{\mathbb{R}^d } {\psi \left( z \right)dz} } \right)\left| {\frac{1} {{\left| {\det A} \right|^{1/p} }} - 1} \right|^p .$$ Moreover, we deal with the p = ∞ eigenvalue problem, studying the limit of λ 1,p 1/p as p→∞.  相似文献   

13.
We study the rate of uniform approximation by Nörlund means of the rectangular partial sums of double Fourier series of continuous functionsf(x, y), 2π-periodic in each variable. The results are given in terms of the modulus of symmetric smoothness defined by $$\begin{gathered} \omega _2 \left( {f,\delta _1 ,\delta _2 } \right) = \mathop {\sup }\limits_{x,y} \mathop {\sup }\limits_{\left| u \right| \leqslant \delta _1 ,\left| v \right| \leqslant \delta _2 } \left| {f\left( {x + u,y + v} \right)} \right. + f\left( {x + u,y - v} \right) + f\left( {x - u,y + v} \right) \hfill \\ + \left. {f\left( {x - u,y - v} \right) + 4f\left( {x,y} \right)} \right| for \delta _1 ,\delta _2 \geqslant 0. \hfill \\ \end{gathered} $$ As a special case we obtain the rate of uniform approximation to functionsf(x,y) in Lip({α, β}), the Lipschitz class, and inZ({α, β}), the Zygmund class of ordersα andβ, 0<α,β ≤ l, as well as the rate of uniform approximation to the conjugate functions \(\tilde f^{(1,0)} (x,y), \tilde f^{(0,1)} (x,y)\) and \(\tilde f^{(1,1)} (x,y)\) .  相似文献   

14.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

15.
In this paper we obtain Liouville type theorems for nonnegative supersolutions of the elliptic problem ${-\Delta u + b(x)|\nabla u| = c(x)u}$ in exterior domains of ${\mathbb{R}^N}$ . We show that if lim ${{\rm inf}_{x \longrightarrow \infty} 4c(x) - b(x)^2 > 0}$ then no positive supersolutions can exist, provided the coefficients b and c verify a further restriction related to the fundamental solutions of the homogeneous problem. The weights b and c are allowed to be unbounded. As an application, we also consider supersolutions to the problems ${-\Delta u + b|x|^{\lambda}|{\nabla} u| = c|x|^{\mu} u^p}$ and ${-\Delta u + be^{\lambda |x|}|\nabla u| = ce^{\mu |x|}u^p}$ , where p > 0 and λ, μ ≥ 0, and obtain nonexistence results which are shown to be optimal.  相似文献   

16.
In this paper, we prove that the maximal operatorsatisfiesis homogeneous of degree 0, has vanishing moment up to order M and satisfies Lq-Dini condition for some  相似文献   

17.
In a bounded simple connected region G ? ?3 we consider the equation $$L\left[ u \right]: = k\left( z \right)\left( {u_{xx} + u_{yy} } \right) + u_{zz} + d\left( {x,y,z} \right)u = f\left( {x,y,z} \right)$$ where k(z)? 0 whenever z ? 0.G is surrounded forz≥0 by a smooth surface Γ0 with S:=Γ0 ? {(x,y,z)|=0} and forz<0 by the characteristic \(\Gamma _2 :---(x^2 + y^2 )^{{\textstyle{1 \over 2}}} + \int\limits_z^0 {(---k(t))^{{\textstyle{1 \over 2}}} dt = 0} \) and a smooth surface Γ1 which intersect the planez=0 inS and where the outer normal n=(nx, ny, nz) fulfills \(k(z)(n_x^2 + n_y^2 ) + n_z^2 |_{\Gamma _1 } > 0\) . Under conditions on Γ1 and the coefficientsk(z), d(x,y,z) we prove the existence of weak solutions for the boundary value problemL[u]=f inG with \(u|_{\Gamma _0 \cup \Gamma _1 } = 0\) . The uniqueness of the classical solution for this problem was proved in [1].  相似文献   

18.
Solutions of the two-dimensional initial boundary-value problem for the Navier-Stokes equations are approximated by solutions of the initial boundary-value problem 9 $$\begin{array}{*{20}c} {\frac{{\partial v}}{{\partial t}}^\varepsilon - v\Delta v^\varepsilon + v_k^\varepsilon v_{x_k }^\varepsilon + \frac{1}{2}v^\varepsilon div v^\varepsilon - \frac{1}{\varepsilon }grad div w^\varepsilon = f_1 ,} \\ {\frac{{\partial w^\varepsilon }}{{\partial t}} + \alpha w^\varepsilon = v^\varepsilon ,} \\ \end{array} $$ 10 $$v^\varepsilon \left| {_{t = 0} = v_0^\varepsilon (x), w^\varepsilon } \right|_{t = 0} = 0, x \in \Omega , v^\varepsilon \left| {_{\partial \Omega } = w^\varepsilon } \right|_{\partial \Omega } = 0, t \in \mathbb{R}^ + $$ . We study the proximity of the solutions of these problems in suitable norms and also the proximity of their minimal global B-attractors. Similar results are valid for two-dimensional equations of motion of the Oldroyd fluids (see Eqs. (38) and (41)) and for three-dimensional equations of motion of the Kelvin-Voight fluids (see Eqs. (39) and (43)). Bibliography: 17 titles.  相似文献   

19.
In this paper, we mainly consider the stability of blowup of solutions for the p-Laplace equation with nonlinear source ${u_t = {div}(|\nabla u|^{p-2}\nabla u) + u^q,\;\;(x,t)\in\mathbb{R}^N \times (0,T)}$ , with the initial value ${u(x,0) = u_0(x) \geq 0}$ , where ${\|u_0 (x)\|_{L^\infty} \leq M}$ and T < ∞ is the blowup time. Under a small oscillation around the radial initial value, we can prove the solution blows up in finite time and obtain the blowup rate estimate of the form ${\|u(\cdot,t)\|_{L^\infty}\leq C(T-t)^{-\frac{1}{q-1}}}$ , where the constant C > 0 is dependent only on N, p, q, and the parameters q and p are expected to be ${p > 2, p-1 < q < \frac{Np}{(N-p)}_+ -1}$ .  相似文献   

20.
The following uniformly elliptic equation is considered: $$\sum {\tfrac{\partial }{{\partial x_i }}a_{ij} (x)\tfrac{{\partial u}}{{\partial x_j }} = f(x,u,\nabla u)} , x \in \Omega \subset R^n ,$$ with measurable coefficients. The function f satisfies the condition $$f(x, u, \nabla u) u \geqslant C|u|^{\beta _1 + 1} |\nabla u|^{\beta _1 } , \beta _1 > 0, 0 \leqslant \beta _2 \leqslant 2, \beta _1 + \beta _2 > 1$$ . It is proved that if u(x) is a generalized (in the sense of integral identity) solution in the domain ΩK, where the compactum K has Hausdorff dimension α, and if \(\frac{{2\beta _1 + \beta _2 }}{{\beta _1 + \beta _2 - 1}}< n - \alpha \) , u(x) will be a generalized solution in the domain ω. Moreover, the sufficient removability conditions for the singular set are, in some sense, close to the necessary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号