首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
以高钛渣、硅灰和高铝矾土熟料为原料,采用碳热还原氮化法合成TiN/O′-Sialon导电陶瓷粉体。利用XRD、SEM和EDS检测手段研究合成温度及恒温时间对粉体相组成和显微形貌的影响,并探讨合成机理。结果表明:随合成温度的升高和恒温时间的延长,产物中O′-Sialon的含量逐渐增加,并在1 375~1 400℃、恒温7 h时成为产物主晶相,此时产物中还有较多TiN和少量β′-Sialon生成。继续提高温度和延长反应时间,体系气氛的改变导致O′-Sialon迅速向β′-Sialon转化。合成粉体中O′-Sialon晶粒多呈等轴状,粒度约2μm,TiN晶粒为细小粒状。此外,反应体系中还有大量白色β′-Sialon晶须状沉积物生成。  相似文献   

2.
工艺参数对含钛高炉渣合成(Ca,Mg)α′-Sialon-AlN-TiN粉的影响   总被引:1,自引:0,他引:1  
以含钛高炉渣、硅灰、高铝矾土熟料和炭黑为原料,采用碳热还原氮化法合成了(Ca,Mg)α′2Sialon2AlN2TiN粉。用X射线衍射法测定了产物相组成及相对含量,研究了合成温度和恒温时间对反应过程的影响,并对合成机理进行了探讨。结果表明:合成温度对(Ca,Mg)α′2Sialon2AlN2TiN粉的合成过程影响显著,随着合成温度升高,产物中α′2Sialon相含量增大,1480℃时α′2Sialon含量达最大,是最佳的合成温度。恒温时间对产物相组成的影响不十分显著,但较长的恒温时间可使还原氮化反应进行得更充分,恒温8h的试样中α′2Sialon含量最高,是较理想的恒温时间。合成过程中SiO的挥发导致试样较大的质量损失,且随着合成温度升高和恒温时间延长而增大。  相似文献   

3.
研究了各参数对燃烧合成长柱状Ybα-Sialon相组成及形貌的影响.结果表明,不同m,n值对燃烧产物相组成有很大影响.原料中Si3N4,AlN,NH4F的增加有利于Si的氮化,同时,Si3N4和NH4F的增加使α-Sialon晶粒由柱状转变为颗粒状.燃烧合成长柱状α-Sialon的形成过程是α-Sialon首先从Yb-Si-Al-O-N液相中形核析出,然后在适宜的生长条件下择优生长,发育成长柱状晶体.  相似文献   

4.
研究了各参数对燃烧合成长柱状Yb α-Sialon相组成及形貌的影响。结果表明,不同m,n值对燃烧产物相组成有很大影响。原料中Si3N4,AlN,NH4F的增加有利于Si的氮化,同时,Si3N4和NH4F的增加使α-Sialon晶粒由柱状转变为颗粒状。燃烧合成长柱状α-Sialon的形成过程是α-Sialon首先从Yb-Si-Al-O-N液相中形核析出,然后在适宜的生长条件下择优生长,发育成长柱状晶体。  相似文献   

5.
含钛高炉渣合成(Ca,Mg)α''-Sialon-AlN-TiN粉末   总被引:2,自引:1,他引:2  
在热力学分析的基础上,以含钛高炉渣为主要原料,采用碳热还原氮化法合成了(Ca,Mg)α'-Sialon-AlN-TiN粉.确定了合成过程的最佳工艺参数:反应温度1 480℃,保温10 h,配碳量为理论值的1.5倍,氮气流量400mL/min.采用X射线衍射仪和扫描电镜研究了合成产物的相组成和显微结构.结果表明:产物中除有主要物相α′-Sialon、AlN和TiN外,还有少量β-SiC,15R和β-CaSiO3等杂质相.其中,(Ca,Mg)α'-Sialon多以片状而AlN多以球形或短柱状形式存在.EDS分析结果表明,Ca2 、Mg2 都进入了α'-Sialon晶格中,但Ca2 的固溶量远高于Mg2 .  相似文献   

6.
NH4F及燃烧温度对燃烧合成长柱状Yb α-Sialon粉体的影响   总被引:1,自引:1,他引:1  
采用SHS法合成了Yb α-Sialon粉体,采用XRD和SEM分析和研究了添加剂NH4F及燃烧温度对燃烧合成长柱状Yb α-Sialon相组成和形貌的影响。实验发现,在不同条件下,添加剂NH4F对燃烧合成长柱状α-Sialon的晶体形貌可以起到抑制和促进两个相反的作用。温度越高,晶体生长速率越大,反应降温越慢,晶体生长时间越长,长柱状晶体生长越完整。燃烧合成得到的长柱状α-Sialon粉体,在室温下,以酒精为介质经过30min以上的超声分散,可以达到较好的分散效果。  相似文献   

7.
在热力学分析的基础上 ,以含钛高炉渣为主要原料 ,采用碳热还原氮化法合成了 (Ca,Mg)α′ Sialon AlN TiN粉。确定了合成过程的最佳工艺参数 :反应温度 14 80℃ ,保温 10h,配碳量为理论值的 1.5倍 ,氮气流量 4 0 0mL/min。采用X射线衍射仪和扫描电镜研究了合成产物的相组成和显微结构。结果表明 :产物中除有主要物相α′ Sialon、AlN和TiN外 ,还有少量 β SiC ,15R和 β CaSiO3 等杂质相。其中 ,(Ca,Mg)α′ Sialon多以片状而AlN多以球形或短柱状形式存在。EDS分析结果表明 ,Ca2 、Mg2 都进入了α′ Sialon晶格中 ,但Ca2 的固溶量远高于Mg2 。  相似文献   

8.
采用Si_3N_4、AlN和Li_2CO_3为原料,以Y_2O_3、CaF_2为添加剂,利用高温氮化反应合成得到不同阳离子掺杂的α-Sialon.并借助XRD和SEM等测试手段,研究了合成温度(1450, 1500, 1600, 1700 ℃)、添加剂(5.0%CaF_2、5.0%Y_2O_3、2.5%CaF_2+2.5%Y_2O_3,质量分数, 下同)等因素对试样反应产物的物相组成、晶面间距及晶粒微观形貌的影响.结果表明:采用Si_3N_4、AlN和Li_2CO_3等为原料,以(2.5%Y_2O_3+2.5%CaF_2)作为复合添加剂,利用高温氮化法在0.9 MPa的流动氮气中1700 ℃下保温3 h合成得到了不同阳离子掺杂的α-Sialon,在显微形貌中可见到长柱状晶粒.提高反应温度能够促进α-Sialon的合成;不同添加剂的试样由于阳离子的离子半径以及Al、O固溶量的不同导致形成的α-Sialon晶面间距不同.  相似文献   

9.
以粉煤灰和炭黑为原料,采用碳热还原氮化法成功制备出β-Sialon基复合材料。研究了加热温度和配料组成对合成过程的影响,分析了材料的生成过程。采用XRD和SEM手段表征了合成材料的相组成和显微结构。结果表明:升高加热温度,增大炭黑与粉煤灰的质量比均可以促进β-Sialon的生成;将炭黑与粉煤灰质量比为0.56的试样加热至1723K并保温6h,可以合成β-Sialon基复合材料;合成材料中β-Sialon多以粒状形式存在,平均粒径为2~3μm;β-Sialon基复合材料的生成过程包括O′-Sialon、X-Sialon和β-Sialon的生成及O′-Sialon和X-Sialon向β-Sialon的转化过程。  相似文献   

10.
廉价非金属资源合成环境友好Sialon/SiC复相陶瓷   总被引:2,自引:0,他引:2  
以大量的固体废弃物金属尾矿和天然的可再生资源黄河泥沙为主要原料,利用炭黑作还原剂,采用碳热还原氮化法合成了Ca-α-Sialon/SiC复相陶瓷粉.用X射线衍射法测定产物相组成及相对含量,研究了合成温度和保温时间对反应过程的影响.结果表明:合成温度对Ca-α-Sialon/SiC陶瓷粉体的合成过程影响显著,随着合成温度升高,产物中Ca-α-Sialon相含量增大,1580 ℃时Ca-α-Sialon相含量达最大.保温时间对产物相组成的影响不十分显著,但较长的保温时间可以使还原氮化反应进行得更充分,保温8 h的试样中Ca-α-Sialon相含量达到了81%.合成过程中SiO的挥发导致试样较大的质量损失,且随着合成温度的升高和保温时间的延长而增大.  相似文献   

11.
含钛高炉渣合成(Ca,Mg)α′-Sialon-AIN-TiN粉末   总被引:1,自引:0,他引:1  
在热力学分析的基础上,以含钛高炉渣为主要原料,采用碳热还原氮化法合成了(Ca,Mg)α′-Sialon-AIN-TiN粉。确定了合成过程的最佳工艺参数:反应温度1480℃,保温10h,配碳量为理论值的1.5倍,氮气流量400mL/min。采用X射线衍射仪和扫描电镜研究了合成产物的相组成和显微结构。结果表明:产物中除有主要物相α′-Sialon、AIN和TiN外,还有少量β-SiC,15R和β-CaSiO3等杂质相。其中,(Ca,Mg)α′-Sialon多以片状而AIN多以球形或短柱状形式存在。EDS分析结果表明,Ca^2 、Mg^2 都进入了α′-Sialon晶格中,但Ca^2 的固溶量远高于Mg^2 。  相似文献   

12.
以含钛高炉渣、硅灰、高铝矾土熟料和炭黑为原料,采用碳热还原氮化法合成了(Ca,Mg)α'-SialonAlN-TiN粉.用X射线衍射法测定了产物相组成及相对含量,研究了合成温度和恒温时间对反应过程的影响,并对合成机理进行了探讨.结果表明:合成温度对(Ca,Mg)α'-Sialon-AlN-TiN粉的合成过程影响显著,随着合成温度升高,产物中α'-Sialon相含量增大,1 480℃时α'-Sialon含量达最大,是最佳的合成温度.恒温时间对产物相组成的影响不十分显著,但较长的恒温时间可使还原氮化反应进行得更充分,恒温8 h的试样中α'-Sialon含量最高,是较理想的恒温时间.合成过程中SiO的挥发导致试样较大的质量损失,且随着合成温度升高和恒温时间延长而增大.  相似文献   

13.
对原位合成Ti2AlN/TiAl复合材料在原位合成及时效热处理条件下的显微组织特征进行分析,并对Ti2AlN/TiAl复合材料进行1400°C,0.5 h固溶及900°C,24 h时效热处理,研究其氮化物沉淀析出。结果表明,原位合成复合材料的显微组织由γ+α2片层团、等轴γ晶粒和Ti2AlN增强相组成。经固溶和时效处理后,获得近全片层基体结构。随着Ti2AlN含量的增加,基体近全片层结构变得不稳定。对时效后的复合材料进行TEM研究,发现在片层团晶粒边界上分布着细小的Ti2AlN沉淀相。在γ-TiAl基体内,针状Ti3AlN沉淀相以其轴向平行于基体[001]方向排列,而另一种具有较大尺寸的Ti3AlN沉淀相则在位错处沉淀析出。  相似文献   

14.
以钛酸四丁酯为原料,采用水解-沉淀法制备TiO2纳米粉体,利用BET、XRD、IR、SEM和激光粒度分析仪等测试手段对制备TiO2粉体晶粒大小、粉体的粒度分布情况等进行了研究,并讨论原料配比,烧成温度,pH值与晶粒大小,物相组成等之间的关系。结果表明:在600°C到800°C之间,TiO2粉体由锐态矿转变为金红石,经800°C加热2h的物相主要为金红石,粉体呈类球形;pH为3.03,n(H2O):n[Ti(C4H9O)4]=30,400°C热处理2h后制备的TiO2粉末晶粒平均尺寸为80nm,粉体的平均粒度为580nm,比表面积为117.2631m2/g。  相似文献   

15.
从热力学上分析了Ca-α-Sialon相的合成过程。研究了以高铝矾土为原料,碳热还原氮化合成Ca-α-Sialon的影响因素,包括还原剂的用量、氮化温度和时间等。结果表明:以矾土为原料,1550°C碳热还原氮化反应可以合成Ca-α-Sialon,适当过量的碳有利于Ca-α-Sialon的氮化还原合成。  相似文献   

16.
以含钛高炉渣、硅灰、高铝矾土熟料和炭黑为原料,采用碳热还原氮化法合成了(Ca,Mg)α'-Sialon-AlN-TiN粉。用X射线衍射法测定了产物相组成及相对含量,研究了合成温度和恒温时间对反应过程的影响,并对合成机理进行了探讨。结果表明:合成温度对(Ca,Mg)α'-Sialon-AlN-TiN粉的合成过程影响显著,随着合成温度升高,产物中α'-Sialon相含量增大,1480℃时α'-Sialon含量达最大,是最佳的合成温度。恒温时间对产物相组成的影响不十分显著,但较长的恒温时间可使还原氮化反应进行得更充分,恒温8h的试样中α'-Sialon含量最高,是较理想的恒温时间。合成过程中SiO的挥发导致试样较大的质量损失,且随着合成温度升高和恒温时间延长而增大。  相似文献   

17.
利用低品位铝矾土经碳热还原氮化合成得到复相Sialon。采用XRD、SEM和EDS等研究了合成温度(分别为1300、1400、1500、1600℃),碳含量(分别为理论量、过量10%、过量50%和过量100%)对合成产物的影响。结果表明:以低品位铝矾土为原料,碳黑为还原剂,碳加入量为理论量,在0.9MPa流动氮气下经1600℃,3h碳热还原氮化反应合成出了α-Sialon和β-Sialon,其中α-Sialon晶体呈六方柱状结构。  相似文献   

18.
以粉煤灰、锆英石和活性炭为原料,采用原位碳热还原氮化法成功制备β-Sialon/ZrN/ZrON 复合材料。研究配料组成和保温时间对合成过程的影响,并讨论材料的生成过程。通过XRD和SEM表征材料的相组成和显微组织。结果表明:增加试样中的碳含量以及延长保温时间均能促进β-Sialon、ZrN 和ZrON 的生成。合成β-Sialon/ZrN/ZrON复合材料的适宜工艺参数为锆英石、粉煤灰和活性炭的质量比49:100:100、合成温度1550°C、保温时间15 h。在1550°C保温15 h合成的β-Sialon 和ZrN(ZrON)的平均粒径分别约为2和1μm。β-Sialon/ZrN/ZrON复合材料的制备过程包括β-Sialon和ZrO2的生成过程以及 ZrO2向ZrN和ZrON的转化过程。  相似文献   

19.
以高钛渣合成出的TiN/β′-Sialon粉体作为原料,常压烧结制备了TiN/β′-Sialon复相导电陶瓷。利用X射线衍射仪和扫描电镜对材料相组成和显微结构进行了表征分析,研究了材料的致密化行为、力学性能及常温导电性能。结果表明:烧结产物主晶相为β′-Sialon和TiN。其中β′-Sialon多呈板条状,TiN为细小粒状,粒度多小于0.5μm。烧结温度为1 530℃、初始原料中TiO2加入量为35%(质量分数)时,材料的体积密度为3.01 g/cm3,硬度为9.62 GPa,抗弯强度为120.07 MPa。30%TiO2加入量是决定材料能否形成TiN导电网络的最低TiO2加入量,此时材料的电阻率为1.3×10-2·cm。  相似文献   

20.
以锆英石和活性炭为原料,采用微波碳热还原法制备了Zr C-Si C复合粉体,对其合成过程进行了热力学分析,并研究了反应温度、添加剂的用量和埋粉等工艺条件对合成的Zr C-Si C复合粉体的物相组成和显微结构的影响。结果表明,提高反应温度和在反应物中添加B2O3有助于促进Zr C-Si C复合粉体的合成,而将反应物埋入Si C粉对该复合粉体的合成则有抑制作用。与常规加热相比,微波加热法可以有效地降低碳热还原反应的起始温度,并且减少制备过程的时间和能耗。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号