首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Purpose

Polyethylene succinate (PES) is a biodegradable synthetic polymer and therefore widely used as a base material in plastic industry to circumvent the environmental problems related with the non-biodegradability of other polymers like polyethylene. Till date only few organisms have been reported to have the ability to degrade PES. Therefore for better management of PES-related environmental waste, the present study is targeted towards isolating mesophilic organism(s) capable of more efficient degradation of PES.

Results

Strain AKS2 was isolated from soil based on survival on a selection plate wherein PES was used as sole carbon source. Ribotyping and biochemical tests revealed that AKS2 is a new strain of Pseudomonas. Scanning electron and atomic force microscopic analysis of the PES films obtained after incubation with AKS2 confirmed PES-degradation ability of AKS2, wherein an alteration in surface topology was observed. The kinetics of PES weight loss showed that AKS2 degrades PES maximally during its logarithmic growth phase at a rate of 1.65?mg/day. This degradation is mediated by esterase activity and may also involve cell-surface hydrophobicity. It has also been observed that AKS2 is able to degrade PES considerably even in the presence of glucose, which is likely to increase the bioremediation potential of this isolate.

Conclusion

A new strain of Pseudomonas has been isolated from soil that is able to adhere to PES and degrade this polymer efficiently. This organism has the potential to be implemented as a useful tool for bioremediation of PES-derived materials.  相似文献   

2.
To produce a new daily record of gross carbon emissions from biomass burning events and post-burning decomposition fluxes in the states of the Brazilian Legal Amazon (Instituto Brasileiro de Geografia e Estatistica (IBGE), 1991. Anuario Estatistico do Brasil, Vol. 51. Rio de Janeiro, Brazil pp. 1–1024). We have used vegetation greenness estimates from satellite images as inputs to a terrestrial ecosystem production model. This carbon allocation model generates new estimates of regional aboveground vegetation biomass at 8-km resolution. The modeled biomass product is then combined for the first time with fire pixel counts from the advanced very high-resolution radiometer (AVHRR) to overlay regional burning activities in the Amazon. Results from our analysis indicate that carbon emission estimates from annual region-wide sources of deforestation and biomass burning in the early 1990s are apparently three to five times higher than reported in previous studies for the Brazilian Legal Amazon (Houghton et al., 2000. Nature 403, 301–304; Fearnside, 1997. Climatic Change 35, 321–360), i.e., studies which implied that the Legal Amazon region tends toward a net-zero annual source of terrestrial carbon. In contrast, our analysis implies that the total source fluxes over the entire Legal Amazon region range from 0.2 to 1.2 Pg C yr−1, depending strongly on annual rainfall patterns. The reasons for our higher burning emission estimates are (1) use of combustion fractions typically measured during Amazon forest burning events for computing carbon losses, (2) more detailed geographic distribution of vegetation biomass and daily fire activity for the region, and (3) inclusion of fire effects in extensive areas of the Legal Amazon covered by open woodland, secondary forests, savanna, and pasture vegetation. The total area of rainforest estimated annually to be deforested did not differ substantially among the previous analyses cited and our own.  相似文献   

3.
An antialgal bacterium, Streptomyces sp. HJC-D1, was applied for the biodegradation of cyanobacterium Microcystis aeruginosa, and the isolation and characterization of dissolved organic matter (DOM) fractions in antialgal products were studied. Results showed the the growth of M. aeruginosa was significantly inhibited by the cell-free filtrate of Streptomyces sp. HJC-D1 with the growth inhibition of 86?±?7 %. The antialgal products were divided using resin adsorbents into the hydrophilic fraction (HPI), hydrophobic acid (HPO-A), transphilic acid (TPI-A), hydrophobic neutral and transphilic neutral, and then the five fractions were analyzed by the 3-D fluorescence spectroscopy, gel permeation chromatography, and Fourier transform infrared spectroscopy. The results indicated that the HPI component was the most abundant DOM fraction in the antialgal products, and its concentration was increased with the increase of cell-free filtrate concentration. The fluorescence peak location and intensity analysis showed that the protein-, fulvic-, and humic-like substances were dominant in the HPI, HPO-A, and TPI-A fractions, and intensities of the relevant fluorescence peaks were stronger in the experimental groups than those of the control groups. It was also found that the number-average molecular weight of DOM fractions ranged from 245 to 1,452 g mol?1, and thereinto organic acids such as HPO-A and TPI-A exhibited lower molecular weights.  相似文献   

4.
Kerr LM  Marchesi JR 《Chemosphere》2006,64(5):848-855
In order to isolate novel bacteria able to degrade alpha-halocarboxylic acids a variety of culturing strategies were implemented. Eight pure cultures were obtained and were found to be associated with the Gram negative Proteobacteria and the Gram positive Bacillus and Enterococcus genera. Furthermore, several strains were obtained which were able to degrade the DL-halocarboxylic acids anaerobically. Molecular analysis of the pure cultures led us to conclude that they may possess novel enzymes involved in the biodegradation of the alpha-halocarboxylic acids. These results are the first for nearly 40 years to describe the isolation of Gram positive isolates on an alpha-halocarboxylic acid as the sole source of carbon and energy, which also show the ability to de-toxify the test substrate by releasing chloride.  相似文献   

5.
6.
The aim of this study was to investigate the behavior of the association between atrazine and glyphosate in the soil through mineralization and degradation tests. Soil treatments consisted of the combination of a field dose of glyphosate (2.88 kg ha?1) with 0, ?, 1 and 2 times a field dose of atrazine (3.00 kg ha?1) and a field dose of atrazine with 0, ?, 1 and 2 times a field dose of glyphosate. The herbicide mineralization rates were measured after 0, 3, 7, 14, 21, 28, 35, 42, 49, 56 and 63 days of soil application, and degradation rates after 0, 7, 28 and 63 days. Although glyphosate mineralization rate was higher in the presence of 1 (one) dose of atrazine when compared with glyphosate alone, no significant differences were found when half or twice the atrazine dose was applied, meaning that differences in glyphosate mineralization rates cannot be attributed to the presence of atrazine. On the other hand, the influence of glyphosate on atrazine mineralization was evident, since increasing doses of glyphosate increased the atrazine mineralization rate and the lowest dose of glyphosate accelerated atrazine degradation.  相似文献   

7.
The development of a novel biological process to treat metal working fluids (MWFs)-containing effluents at bioreactor scale was pursued in this work. The bacteria Pseudomonas stutzeri CECT 930 was investigated for the first time as an alternative agent for MWF degradation. An adequate medium design and mixing and aeration system, as well as an appropriate microorganism proved to be crucial for reaching high levels of degradation by P. stutzeri and by an indigenous consortium (about 70% and 50% of reduction in total petroleum hydrocarbon content in less than 2 wk, respectively). Additionally, as there is no information in literature trying to kinetically characterize an MWF-polluted effluent degradation process, all the experimental data were fitted to logistic and Luedeking and Piret models, that allowed to elucidate the growth-associated character of the biodegradation process.  相似文献   

8.
The dynamics of the atrazine mineralization potential in agricultural soil was studied in two soil layers (topsoil and at 35-45 cm depth) in a 3 years field trial to examine the long term response of atrazine mineralizing soil populations to atrazine application and intermittent periods without atrazine and the effect of manure treatment on those processes. In topsoil samples, 14C-atrazine mineralization lag times decreased after atrazine application and increased with increasing time after atrazine application, suggesting that atrazine application resulted into the proliferation of atrazine mineralizing microbial populations which decayed when atrazine application stopped. Decay rates appeared however much slower than growth rates. Atrazine application also resulted into the increase of the atrazine mineralization potential in deeper layers which was explained by the growth on leached atrazine as measured in soil leachates recovered from that depth. However, no decay was observed during intermittent periods without atrazine application in the deeper soil layer. atzA and trzN gene quantification confirmed partly the growth and decay of the atrazine degrading populations in the soil and suggested that especially trzN bearing populations are the dominant atrazine degrading populations in both topsoil and deeper soil. Manure treatment only improved the atrazine mineralization rate in deeper soil layers. Our results point to the importance of the atrazine application history on a field and suggests that the long term survival of atrazine degrading populations after atrazine application enables them to rapidly proliferate once atrazine is again applied.  相似文献   

9.

Introduction

Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, methods and results

In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000?mg/L. On the basis of morphological and biochemical properties, 16S rRNA gene sequencing, and phylogenetic analysis, the isolated strain was identified as Rhodococcus sp. Phenol removal was evaluated at a lab-scale in Erlenmeyer flasks and at a bioreactor scale in a stirred tank reactor. Rhodococcus sp. CS1 was able to completely remove phenol in a range of 200 to 1,000?mg/L in mineral medium at 30 ± 2?°C and pH 7 as optimal conditions. In the stirred tank bioreactor, we studied the effect of some parameters, such as agitation (200?C600 rpm) and aeration (1?C3?vvm), on growth and phenol removal efficiency. Faster phenol biodegradation was obtained in the bioreactor than in Erlenmeyer flasks, and maximum phenol removal was achieved at 400?rpm and 1 vvm in only 12?h. Furthermore, Rhodococcus sp. CS1 strain was able to grow and completely degrade phenols from tannery effluents after 9?h of incubation.

Conclusion

Based on these results, Rhodococcus sp. CS1 could be an appropriate microorganism for bioremediation of tannery effluents or other phenol-containing wastewaters.  相似文献   

10.
The efficacy of a wastewater treatment lagoon (WWTL) at preventing the spread of Pseudomonas aeruginosa into natural aquatic habitats was investigated. A WWTL and its connected combined sewer and brook were exhaustively sampled. Physico-chemical analyses showed a stratification of the first pond according to pH, temperature and oxygen content. The P. aeruginosa counts partially matched this stratification with higher values among the bottom anaerobic waters of the first half of this pond. Genotyping of 494 WWTL P. aeruginosa strains was performed and led to the definition of 85 lineages. Dominant lineages were observed, with some being found all over the WWTL including the connected brook. IS5 was used as an indicator of genomic changes, and 1 to 12 elements were detected among 16 % of the strains. IS-driven lasR (genetic regulator) disruptions were detected among nine strains that were not part of the dominant lineages. These insertional mutants did not show significant elastase activities but showed better growth than the PAO1 reference strain in WWTL waters. Differences in growth patterns were related to a better survival of these mutants at an alkaline pH and a better ability at using some C-sources such as alanine. The opportunistic colonization of a WWTL by P. aeruginosa can involve several metabolic strategies which appeared lineage specific. Some clones appeared more successful than others at disseminating from a combined sewer toward the overflow of a WWTL.  相似文献   

11.
12.
The extensive use of pesticides represents a risk to human health and to the environment. This study aimed to investigate if the exposure to atrazine and diuron, two herbicides widely used in Brazil, could induce changes in the susceptibility profile to aztreonam, colistin and polymyxin B antimicrobials in isolates of P. aeruginosa obtained from soil samples by using the determination of minimum inhibitory concentration (MIC) test. Three isolates had an increase of MIC to aztreonam after exposure to both herbicides and one isolate did not show any MIC change. The MexAB-OprM efflux pump has already been upregulated in these isolates and the herbicides atrazine and diuron did not increase MexAB-OprM overexpression. Therefore, the decrease in aztreonam susceptibility was not directly related to this pump, suggesting that probably other mechanisms should be involved.  相似文献   

13.
Yeast communities from heavily polluted sediments that received the discharge from oil refineries and other industries were studied. Yeast species were isolated from these sediments and their ability to degrade dibenzofuran were determined. Twenty-four different yeast strains were isolated and cultured on aromatic medium; two Candida krusei strains. Candida tenuis, Candida tropicalis, two Pichia anomala strains, Pichia haplophila, two Rhodotorula glutinis strains, Rhodotorula mucilaginosa, two Trichosporon pullulans strains and Yarrowia lipolytica were able to hydroxylate dibenzofuran. Three metabolites were identified by HPLC analysis: 3-hydroxydibenzofuran was in all the cases the most abundant isomer, and while 4-hydroxydibenzofuran was also common, 2-hydroxydibenzofuran was detected in very small quantities and with few species. In the R. glutinis and Y. lipolytica cultures a ring cleavage product was also found. While in the R. gluttinis assays the hydroxydibenzofuran was detected earlier, at 2 days' incubation time, in the other yeast experiments they were observed at the 4-5th incubation days with the maximum amounts at the 7th day. Our results confirmed the ability of autochthonous yeast species to hydroxylate dibenzofuran and to cleave the rings, and it is the first report for C. krusei, C. tenuis, P. anomala, P. haplophila and R. mucilaginosa. The ecological relevance of this study is based on the fact that dibenzofuran is a xenobiotic not easily transformed, so the catabolic activities observed in authochonous yeasts contribute to broadening the biodegradable substrate spectrum.  相似文献   

14.
15.
The production and properties of a rhamnolipid-type biosurfactant, synthesized by the Pseudomonas aeruginosa LBM10 strain, isolated from a southern coastal zone in Brazil, were investigated. The assays were conducted in a rotary shaker at 30 degrees C and 180 rpm for a period of 96 h. Soybean oil and sodium nitrate were the best sources of carbon and nitrogen, respectively. A nitrogen-limiting condition (C/N ratio of 100) was favorable to biosurfactant production. The formation of stable emulsions was better in saline concentrations below 0.5%, pH values in the range from 6 to 9 and temperatures in the range from 35 to 40 degrees C, maintaining about 80% of its original activity for salinity up to 3% and 120 min of exposure at 100 degrees C. The biosurfactant may be produced with this microorganism using renewable substrates that are readily available, reaching values of 1.42 g l(-1) measured as rhamnose. This biosurfactant has interesting and useful properties for many industrial applications.  相似文献   

16.
Environmental Science and Pollution Research - The medicinal plant Juniperus oxycedrus is less recognized for the diversity of its fungal endophytes and their potential to produce extracellular...  相似文献   

17.
使用稀释富集法,从大港油田采油废水处理站生化池中定向快速的分离出多株高效石油降解菌株。对分离获得的1株优势菌株进行生理生化和分子生物学鉴定,显示属于Pseudomonas stutzeri的1个新菌株,命名为Pseudomonas stutzeri TH-31。通过批次实验,对菌株TH-31的生长条件和石油降解条件进行了优化,经过条件优化,P.stutzeri TH-31在初始pH 7,原油投加量为300 mg/L,35℃培养5 d后,获得最高石油烃降解率92.7%。  相似文献   

18.
Sano D  Ishifuji S  Sato Y  Imae Y  Takaara T  Masago Y  Omura T 《Chemosphere》2011,82(8):1096-1102
The excess growth of cyanobacteria in semi enclosed water areas caused by eutrophication brings about coagulation inhibition in drinking water treatment processes. In this study, coagulation inhibitor proteins produced by Microcystis aeruginosa, a major cyanobacterium in algal bloom, were acquired by a phage display technique, an aluminum-immobilized affinity chromatography and a protein expression technique using Escherichia coli cells. Two cyanobacterial peptides with a high ratio of metallophilic amino acids were recovered, which were a part of homologues of a thiol oxidase enzyme Ero1p and a trans-acting repressor ArsR. It was also shown that the homologue of ArsR exhibited a stronger inhibitory effect on the coagulation of kaolin suspension with polyaluminum chloride than the control proteins. This is the first report to identify a cyanobacterial cell component to inhibit coagulation. The compositions of polar amino acids were critical to explain the strength of coagulation inhibition potential. Polar proteins from cyanobacteria could collectively consume coagulants or stabilize clay particles, which would be plausible explanations for causing coagulation inhibition. Meanwhile, results from the kaolin coagulation tests using the control proteins implied that the neutralization of positive charges of coagulant constituents by simple electrostatic interactions might not be the key mechanism on the protein-induced coagulation inhibition.  相似文献   

19.
Achá D  Hintelmann H  Yee J 《Chemosphere》2011,82(6):911-916
Sulfate reducing bacteria (SRB) are important mercury methylators in sediments, but information on mercury methylators in other compartments is ambiguous. To investigate SRB involvement in methylation in Amazonian periphyton, the relationship between Hg methylation potential and SRB (Desulfobacteraceae, Desulfobulbaceae and Desulfovibrionaceae) abundance in Eichhornia crassipes and Polygonum densiflorum root associated periphyton was examined. Periphyton subsamples of each macrophyte were amended with electron donors (lactate, acetate and propionate) or inhibitors (molybdate) of sulfate reduction to create differences in SRB subgroup abundance, which was measured by quantitative real-time PCR with primers specific for the 16S rRNA gene. Mercury methylation and demethylation potentials were determined by a stable isotope tracer technique using 200HgCl and CH3202HgCl, respectively. Relative abundance of Desulfobacteraceae (<0.01-12.5%) and Desulfovibrionaceae (0.01-6.8%) were both highly variable among samples and subsamples, but a significant linear relationship (p < 0.05) was found between Desulfobacteraceae abundance and net methylmercury formation among treatments of the same macrophyte periphyton and among all P. densiflorum samples, suggesting that Desulfobacteraceae bacteria are the most important mercury methylators among SRB families. Yet, molybdate only partially inhibited mercury methylation potentials, suggesting the involvement of other microorganisms as well. The response of net methylmercury production to the different electron donors and molybdate was highly variable (3-1104 pg g−1 in 12 h) among samples, as was the net formation in control samples (17-164 pg g−1 in 12 h). This demonstrates the importance of community variability and complexity of microbial interactions for the overall methylmercury production in periphyton and their response to external stimulus.  相似文献   

20.
一株1,2-二氯苯降解菌的分离鉴定及其降解特性   总被引:2,自引:1,他引:2  
采用富集驯化方法,从盐城芦苇湿地根际土壤中分离得到一株可高效降解1,2-二氯苯的菌株,命名为DL-1。该菌株可以在以1,2-二氯苯为惟一碳源的无机培养基上生长,能够耐受最高浓度为200 mg/L的1,2-二氯苯。根据形态特征观察、生理生化鉴定和16S rDNA序列同源性分析,该目标菌株被鉴定为蜡质芽孢杆菌(Bacillus cereus)。菌株DL-1对1,2-二氯苯降解性能研究表明,该菌株为一株兼性厌氧菌,其适宜降解浓度、适宜温度、适宜pH值和适宜接种量分别为120mg/L、32℃、7和10%,在适宜降解条件下降解12,-二氯苯4 d其降解率达到80.3%。本实验为利用该菌株降解12,-二氯苯污水的应用提供了理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号