首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
采用真空冶炼技术研制开发了Q960高强钢气体保护焊丝,利用金相显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)并通过常温拉伸和低温冲击等试验研究了焊丝及熔敷金属化学成分、组织及力学性能之间的关系。结果表明,采用Mn-Ni-Cr-Mo-Ti合金体系,研制的最佳强韧性焊丝焊态熔敷金属抗拉强度为920 MPa,-60℃冲击吸收能量为66.7 J;合金元素含量提高,组织由贝氏体相向贝氏体+马氏体混合相转变,但合金元素含量过高,会导致马氏体相增多,对韧性不利;熔敷金属中存在一定量的残余奥氏体,可提高韧性。  相似文献   

2.
通过拉伸、冲击试验,利用金相显微镜、透射电镜、扫描电镜和电子背散射衍射技术分析了铬含量对耐候钢熔敷金属组织和韧性的影响.结果表明,两种熔敷金属的组织均为粒状贝氏体、针状铁素体和少量板条贝氏体.两种熔敷金属冲击韧性良好.与含1.0% Cr(质量分数)熔敷金属相比,含1.41% Cr熔敷金属中粒状贝氏体含量升高,针状铁素体含量降低,屈服强度增加6%,抗拉强度增加9%,冲击吸收功降低56%.此外,含1.41%Cr熔敷金属中M-A组元含量升高、大角度晶界比例下降、平均有效晶粒尺寸增加,显微裂纹的形核几率增加,裂纹扩展阻力降低,导致其韧性降低.  相似文献   

3.
研究了不同保护气(Ar+5%CO2,Ar+10%CO2,Ar+20%CO2和Ar+30%CO2)对1000 MPa级高强熔敷金属组织及强韧性的影响.结果表明,当CO2含量为20%时,熔敷金属力学强韧性最佳,屈服强度为980 MPa,室温冲击功为72.6 J,-40℃冲击功为52 J.组织观察和分析结果表明,随着保护气中CO2含量增加,熔敷金属组织中贝氏体板条含量增多,且贝氏体板条分布形态由平行状向交织状转变,交织状贝氏体板条分割细化原奥氏体晶粒,从而细化马氏体板条.贝氏体含量和马氏体/贝氏体板条的分布形态是决定熔敷金属力学性能的根本原因.贝氏体含量并非越多越好,存在最佳含量比例;随着保护气CO2含量的进一步增加,熔敷金属夹杂物数量增加,尺寸增大,且主要成分含量发生变化.当保护气中CO2含量为30%时,出现较大尺寸的夹杂物,导致熔敷金属韧性降低.  相似文献   

4.
高强焊丝熔敷金属力学性能及组织分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用金相显微镜、扫描电子显微镜(SEM)及附带能谱仪(EDS)并通过常温拉伸和低温冲击等试验研究了不同保护气体下高强焊丝熔敷金属组织和强韧性变化.结果表明,针对此高强度气体保护焊焊丝,采用Ar+5%CO2保护气体,熔敷金属强韧性最佳;焊缝金相组织为粒状贝氏体+板条贝氏体,细小板条束可有效提高焊缝韧性;M-A组元存在明显C元素富集的现象,大量块状M-A组元的出现造成M-A组元基体间位错塞积,引起应力集中,在裂纹形核阶段易萌生微裂纹,对韧性不利;采用Ar+2%O2和Ar+20%CO2保护气体,焊缝中较大尺寸夹杂物数量增多,是诱发准解理断裂引起冲击吸收功降低的主要原因.  相似文献   

5.
曹志龙  朱浩  安同邦  王晨霁  马成勇  彭云 《焊接学报》2023,(7):116-122+135-136
自主设计4种不同镍含量(ωNi)的Ni-Cr-Mo系焊丝,采用TIG焊制备1 000 MPa级高强钢熔敷金属.利用光学显微镜、扫描电子显微镜、透射电子显微镜、X射线衍射仪等对不同镍含量的熔敷金属微观组织进行表征,通过拉伸、冲击、硬度试验对熔敷金属力学性能进行测试,探求镍含量对1 000 MPa级高强钢熔敷金属强韧性机理的影响规律.结果表明,不同镍含量熔敷金属组织均由板条马氏体、板条贝氏体、联合贝氏体和残余奥氏体组成;镍含量不同,微观组织不同;随着镍含量增加,柱状晶宽度增大,板条马氏体、联合贝氏体和残余奥氏体增多,板条贝氏体减少,熔敷金属强度提高,塑性降低;当ωNi为5.44%时,强韧匹配最佳,屈服强度为1 005 MPa,-50℃下冲击吸收能量为95 J.  相似文献   

6.
为了满足Q960E钢焊接时对强度及冲击韧性等性能的要求,设计了以Ni-Cr-Mo-Mn-Si-Ti为合金系的焊丝,确定了焊丝的成分,并对该焊丝的熔敷金属性能进行测定。试验结果表明:焊丝熔敷金属的屈服强度与抗拉强度分别为858 MPa及933 MPa,冲击吸收功为84 J(-40℃),各项力学性能均达到要求;焊缝熔敷金属中扩散氢含量平均值为3.43 m L/100 g,达到超低氢标准;焊丝的飞溅率为4.6%,符合生产要求;焊缝熔敷金属组织为低碳马氏体和下贝氏体的混合组织,达到设计要求;同时利用扫描电镜对断口形貌进行了分析,断口为典型的准解理形貌,断口的延性脊保证了韧性。  相似文献   

7.
针对吉帕级熔敷金属韧性不足的现状,设计了4组焊丝,研究了Al,Mg元素对金属粉芯焊丝熔敷金属组织和力学性能的影响. 采用扫描电子显微镜对熔敷金属的显微组织进行了表征,通过力学性能测试表征了熔敷金属的力学性能. 结果表明,熔敷金属主要由马氏体、贝氏体构成. 随着熔敷金属中Al,Mg元素的添加量由0Al-0Mg增加至0.3Al-0.9Mg,其氧含量由0.0308%降为0.0143%,聚合贝氏体含量减少,板条马氏体含量增加. 夹杂物由传统的以Fe,Al,Si,Mn等元素的氧化物转变为以Al,Mg氧化物为主的球形细小夹杂物(MgO·Al2O3). 0.3Al-0.9Mg组与0Al-0Mg组相比较,夹杂物的平均尺寸降低了0.13 μm,抗拉强度增加了152 MPa,冲击吸收能量增加了11 J (?20 ℃).  相似文献   

8.
在X70埋弧焊丝研制的基础上,确定以贝氏体强化针状铁素体的技术路线研制X80管线钢的配套焊丝。采用维氏硬度仪测量熔敷金属的硬度;在冲击试验机上进行熔敷金属低温冲击韧度试验;在拉伸试验机上进行熔敷金属拉伸试验;采用金相显微镜观察熔敷金属的显微组织;在扫描电子显微镜上进行断口分析。结果表明:熔敷金属不仅具有高的强度,而且具有优良的低温韧性(KV(-20℃)=151.5 J),满足了X80管线钢焊缝力学性能要求。  相似文献   

9.
孟满丁  魏金山  安同邦  马成勇  彭云 《焊接学报》2024,(4):93-100+134-135
采用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、电子背散射衍射(EBSD)等试验,分析了不同Si元素含量(质量分数,%)对800 MPa级低合金高强(HSLA)钢焊材熔敷金属组织特征及韧性的影响.结果表明,当Si元素含量从0.45%增加到0.66%时,熔敷金属(0.035C-0.45Si-1.47Mn-2.56Ni-0.68Cr-0.62Mo)的屈服强度从850 MPa增大到895 MPa,抗拉强度从917 MPa增大到954 MPa,-50℃冲击吸收能量从115 J降低到73 J;当Si元素含量为0.45%时,熔敷金属显微组织主要由板条贝氏体及部分粒状贝氏体和板条马氏体组成,各组织间呈相互交织状分布;而当Si元素含量增大到0.66%时,组织主要由细长条状的板条马氏体及部分板条贝氏体组成;随着Si元素含量增大,组织长宽比明显增大,且组织之间趋于平行分布.熔敷金属由γ(奥氏体)→贝氏体/马氏体混合组织转变时的相变温度随着Si元素含量增加而降低,随着Si含量增大,熔敷金属板条和板条块亚结构由交织的短条状向平行的细长条状转变,板条束亚结构尺寸明显变大,板条束亚结构...  相似文献   

10.
超级马氏体不锈钢焊丝MAG焊熔敷金属冲击性能优化   总被引:2,自引:2,他引:0       下载免费PDF全文
白鹤滩百万千瓦水电机组全部采用国产HS13/5L焊丝进行焊接,成功实现了中国高端装备制造的重大突破. HS13/5L焊丝为水轮机转轮同材质焊接材料,属于13Cr型超级马氏体不锈钢,然而其MAG焊熔敷金属的韧性低于母材,针对此问题,将现有的MAG平焊焊接工艺调整为立向上焊焊接工艺,以提高熔敷金属的冲击韧性.对比分析了平焊、立向上焊熔敷金属的微观组织和冲击性能. 结果表明,立向上焊位置回火热处理态熔敷金属的室温冲击吸收能量达到120 J以上,比平焊位置提高了约40%. 两种焊接位置下的熔敷金属微观组织的相组成无明显差异,焊态组织为淬火马氏体 + 残余奥氏体 + δ-Fe,回火热处理态组织为回火板条马氏体 + 逆变奥氏体 + δ-Fe.立向上焊熔敷金属中的氧化夹杂物密度比平焊位置降低了约22%.平焊和立向上焊熔敷金属冲击断口整体呈现出韧性断裂的特征,立向上焊位置熔敷金属的韧性优于平焊位置.  相似文献   

11.
利用X射线衍射仪(XRD) 、扫描电镜(SEM) 、透射电镜(TEM)、室温拉伸和冲击性能测试研究了冷轧对M50钢马氏体/贝氏体(M/B)复相组织和性能的影响。结果表明:20%冷轧变形量的试样经等温淬火后具有最佳的抗拉强度(2535.7 MPa)和冲击性能(96.93 J),相比变形量为0%的试样,冲击吸收能量提高了约21%,抗拉强度提高了约5%。当变形量小于20%时,随着变形量的增加,M/B复相组织逐渐细化且在20%的冷轧变形量下组织最细;当变形量大于20%时,随着变形量的增加,贝氏体束减少,其对马氏体板条的分割作用减弱,导致组织呈现一定的粗化。  相似文献   

12.
通过预处理(固溶处理)、等温淬火以及不同温度回火等处理方法,利用光学显微镜、扫描电镜、洛氏硬度计、拉伸试验机、冲击试验机等设备研究了奥氏体化温度对40CrNiMo钢奥氏体晶粒长大速度以及硬度的影响,探索了回火温度对贝氏体/马氏体多相钢微观组织和力学性能的影响。结果显示,预处理期间,奥氏体晶粒随奥氏体化温度的升高首先缓慢增长然后快速长大,然而硬度保持在56 HRC左右。250~500 ℃回火时,大量细小的碳化物析出,微观组织仍然保持原来的板条状,试验钢的强度、硬度降低,塑韧性呈现先降低后升高的趋势;400 ℃回火试样伸长率最低,冲击吸收能量最小,表明400 ℃回火时出现回火脆性;回火温度升高到600 ℃,基体组织发生再结晶,转变为回火索氏体,此时强、硬度最低,冲击吸收能量高达147 J。  相似文献   

13.
焊接热输入对Q890高强钢热影响区裂纹扩展的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
采用Gleeble1500热模拟试验机,研究不同热输入对Q890高强钢焊接热影响区粗晶区的微观组织和韧性影响规律. 结果表明,随着热输入的增加,粗晶区的微观组织表现出从马氏体组织向马氏体、贝氏体的混合组织,再向贝氏体、粒状贝氏体的混合组织的转变. 当热输入为19.7 kJ/cm时,冲击吸收功最高为83 J,主要原因是由于先相贝氏体分割后相马氏体,大角度晶界密度最大,改善了冲击韧性. 当热输入较高时,粗晶区脆化的原因是由于M-A组元呈链状分布,造成局部应力集中,成为裂纹起裂和扩展的主要通道.  相似文献   

14.
焊接热循环对X80管线钢粗晶区韧性和组织的影响   总被引:10,自引:2,他引:8       下载免费PDF全文
利用焊接热模拟技术、光学金相、透射电子显微镜和示波冲击韧度试验、断裂韧度试验研究了焊接热循环对X80管线钢粗晶区韧性和组织的影响。试验结果表明,在六种热循环参数下,X80管线钢模拟粗晶区具有不同的显微组织,当焊接热循环参数较小时,以下贝氏体和板条马氏体为主,随着热循环参数的增大,以粒状贝氏体为主,且其中的M—A岛的形态由细短条状转变成大长条状或大块状,分布由晶界转向晶内,同时数量增多,韧性恶化。  相似文献   

15.
采用液-固复合的方法制备铸态复合耐磨试验钢,且分别进行等温淬火和淬火-回火处理,利用扫描电镜、硬度计及冲击性能测试研究了不同的热处理对高铬高碳钢/碳钢复合铸造耐磨钢组织和性能的影响。利用JMatPro软件对试验钢不同温度下平衡相种类与含量进行了计算。结果表明,铸态高铬高碳钢/碳钢复合材料耐磨层的微观组织由网状碳化物和粒状珠光体组成;基体层为由粗大的奥氏体在较快冷速下形成的魏氏组织。等温淬火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+奥氏体+铁素体的微观组织,基体层形成了块状铁素体与珠光体的微观组织;淬火-回火后试验钢耐磨层形成了网状碳化物+细粒状碳化物+马氏体的微观组织,基体层形成马氏体+上贝氏体的微观组织。经过等温淬火的试验钢耐磨层硬度为493 HBW,冲击吸收能量为2.6 J,基体层冲击吸收能量为79.2 J;经过淬火-回火的耐磨层硬度为629 HBW,冲击吸收能量为1.6 J,基体层的冲击吸收能量为20.0 J。考虑复合耐磨钢需要抵抗较高冲击载荷,880 ℃保温2 h空冷至320 ℃保温5.5 h的等温淬火为更优的热处理工艺。  相似文献   

16.
采用三种热输入进行超厚板窄间隙熔化极气体保护焊,借助金相显微镜、扫描电子显微镜及附带EDS系统和透射电子显微镜研究了热输入对焊缝金属组织和性能的影响.结果表明,三种热输入焊缝金属组织主要由板条马氏体、无碳化物贝氏体、M-A组元和残余奥氏体组成.随着焊接热输入的增加,焊缝组织中马氏体含量减少;也使无碳化物贝氏体形核率降低,造成无碳化物贝氏体粗化.并且当贝氏体相变时热输入的增加使碳原子扩散距离变远,促使残余奥氏体形状由膜状向块状转变.另外随着热输入的增加,焊缝金属强度下降,而冲击韧性对热输入不敏感.  相似文献   

17.
热处理工艺对300M超高强度钢组织和性能的影响   总被引:1,自引:0,他引:1  
采用SEM、TEM等方法研究了不同回火温度对300M超高强度钢的显微组织和力学性能的影响。结果表明,300M钢经870℃淬火后,在290~320℃范围内回火,显微组织为板条马氏体、下贝氏体和残留奥氏体组成。随着回火温度的升高,板条马氏体宽度由260 nm增加到437 nm,位错密度减小,下贝氏体含量增多;合金的抗拉强度有所下降,韧性呈上升趋势,而屈服强度、伸长率和断面收缩率变化较小。当回火温度为300℃时,强度、塑性和韧性达到一个最佳匹配,合金具有最优的综合力学性能。  相似文献   

18.
利用Gleeble-3500热模拟机、组织分析、力学测试、扫描电镜等方法研究了高温停留时间对X80管线钢焊缝热影响粗晶区(Coarse-grained heat-affected zone,CGHAZ)组织性能的影响。研究结果表明,X80管线钢热影响区粗晶区的组织主要由粒状贝氏体、贝氏体铁素体以及M/A组元组成。随着高温停留时间的增加,碳氮原子扩散速度增加,成分更加趋于均匀化,粒状贝氏体和贝氏体铁素体交错分布程度增加,M/A岛状组织以及碳氮化合物分布更加弥散,粗晶区韧性值逐渐增加,当高温停留时间为18 s时,粗晶区冲击性能最佳,-10 ℃的冲击吸收能量为288 J,硬度值适中,为270 HV0.3。当高温停留时间大于18 s时,粗晶区冲击吸收能量有所下降,硬度值增大。高温停留时间为8 s时,粗晶区韧性最低,冲击吸收能量仅为49 J,硬度值最高,为283 HV0.3。  相似文献   

19.
采用焊接热模拟通过改变冷却时间(t8/5),研究了金属芯焊丝E120C-K4多道焊熔敷金属模拟粗晶区(CGHAZ)显微组织对冲击韧性的影响规律. 结果表明,当t8/5为6 ~ 12 s时,CGHAZ显微组织由蜕化上贝氏体、粒状贝氏体和针状铁素体组成,奥氏体晶粒内部形成复相分割结构,冲击韧性最好. 而当t8/5为30 ~ 120 s时CGHAZ显微组织主要由粒状贝氏体和针状铁素体组成,冲击韧性下降. t8/5为120 s时,冲击韧性最差,–40 ℃冲击吸收能量仅为24 J. t8/5为6 ~ 12 s时韧性改善的关键是形成复相分割微观结构;晶粒细小;单位距离上大角度晶界数量多.  相似文献   

20.
通过对09MnNiDR低温压力容器用钢埋弧焊焊接接头热影响区不同位置处的冲击吸收能量的测试、冲击断口以及微观组织的观察分析,确定了09MnNiDR焊接接头的组织特征以及最薄弱区域,并深入讨论了最薄弱区域对焊接接头冲击韧性的影响. 结果表明,在?70 ℃时,焊接接头母材、亚临界热影响区、临界热影响区、细晶热影响区平均冲击吸收能量均在270 J以上,表现出良好的韧性. 焊缝的平均冲击吸收能量为139 J. 焊接接头韧性最薄弱区域为粗晶热影响区,当缺口完全位于粗晶热影响区时,冲击吸收能量为20 J,相比于母材冲击韧性损失高达92.7%. 粗晶热影响区的显微组织为粗大的粒状贝氏体、板条贝氏体以及块状铁素体组成的复合组织. 随着缺口尖端前沿粗晶热影响区比例的增加,其分布位置越靠近缺口尖端,试样的冲击吸收能量越小,充分体现出最薄弱区域对冲击韧性的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号