首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Apelin is a peptide present in different cell types and secreted by adipocytes in humans and rodents. Apelin exerts its effects through a G-protein-coupled receptor called APJ. During the past years, a role of apelin/APJ in energy metabolism has emerged. Apelin was shown to stimulate glucose uptake in skeletal muscle through an AMP-activated protein kinase (AMPK)-dependent pathway in mice. So far, no metabolic effects of apelin have been reported on human adipose tissue (AT). Thus, the effect of apelin on AMPK in AT was measured as well as AMPK-mediated effects such as inhibition of lipolysis and stimulation of glucose uptake. AMPK and acetyl-CoA carboxylase phosphorylation were measured by western blot to reflect the AMPK activity. Lipolysis and glucose uptake were measured, ex vivo, in response to apelin on isolated adipocytes and explants from AT of the subcutaneous region of healthy subjects (body mass index: 25.6 ± 0.8 kg/m(2), n = 30 in total). APJ mRNA and protein are present in human AT and isolated adipocytes. Apelin stimulated AMPK phosphorylation at Thr-172 in a dose-dependent manner in human AT, which was associated with increased glucose uptake since C compound (20 μM), an AMPK inhibitor, completely prevented apelin-induced glucose uptake. However, in isolated adipocytes or AT explants, apelin had no significant effect on basal and isoprenaline-stimulated lipolysis. Thus, these results reveal, for the first time, that apelin is able to act on human AT in order to stimulate AMPK and glucose uptake.  相似文献   

4.
There is still controversy about the relation between the glucose concentration in the subcutaneous (sc.) adipose tissue and the blood plasma. Depending on the technique applied, the glucose concentration in sc. tissue varies between 50% and 100% of the plasma glucose concentration. In the present study the sc. glucose concentration of forearm and abdomen in seven healthy volunteers was compared with plasma glucose by applying the microdialysis technique with very low flow rates. A microdialysis probe implanted into the subcutaneous tissue of abdomen and forearm was perfused with a flow rate of 1 microl/4 min. The dialysate was sampled in three 2-h-fractions in the fasting state and in one 2-h-fraction during a hyperglycemic clamp (216.9+/-3.4 mg/dl) (mean +/- SEM). The mean recoveries of the plasma glucose were 91.1+/-4.1% in the forearm and 82.7+/-18.0% in the abdomen. The recoveries in the sc. tissue of abdomen and arm were not significantly different. However, the arm showed significantly (p < 0.014) less interindividual variance (range 73.2- 103.2%) than the abdomen (range 50.6-117.1%) and appears to be the preferable implantation site. The recovery remained constant during the investigation.  相似文献   

5.
Rates of glucose uptake by epididymal and retroperitoneal adipose tissue in vivo, as well as rates of hexose uptake and glycolytic flux in isolated adipocytes, were determined in rats adapted to a high-protein, carbohydrate-free (HP) diet and in control rats fed a balanced (N) diet. Adaptation to the HP diet induced a significant reduction in rates of glucose uptake, estimated with 2-deoxy-[1-(3)H]-glucose, both by adipose tissue (epididymal and retroperitoneal) in vivo and by isolated adipocytes. Twelve hours after replacement of the HP diet with the balanced diet, rates of adipose tissue uptake in vivo in HP-adapted rats returned to levels that did not differ significantly from those in N-fed rats. The rate of flux in the glycolytic pathway, estimated with (3)H[5]-glucose, was also significantly reduced in adipocytes from HP-fed rats. In agreement with the above findings, the activities of hexokinase (HK), phosphofructo-1-kinase (PFK-1), and pyruvate kinase (PK) were markedly reduced in adipose tissue from HP-adapted rats. The activity of pyruvate kinase was partially reverted by diet replacement for 12 hours. The low-plasma insulin and high-glucagon levels in HP-fed rats may have played an important role in the reduction of adipose tissue glucose utilization in these animals.  相似文献   

6.
To elucidate the role of adipose tissue glucose uptake in whole-body metabolism, sc and visceral adipose tissue glucose uptake and perfusion were measured in 10 nonobese and 10 age-matched obese men with positron emission tomography using [(18)F]-2-fluoro-2-deoxy-D-glucose, and [(15)O]-labeled water during normoglycemic hyperinsulinemia. Whole-body and skeletal muscle glucose uptake rates per kilogram were lower in obese than in nonobese subjects (P < 0.01). Compared with nonobese, the obese subjects had 67% lower abdominal sc and 58% lower visceral adipose tissue glucose uptake per kilogram of fat. In both groups, insulin stimulated glucose uptake per kilogram fat was significantly higher in visceral fat depots than in sc regions (P < 0.01). Both sc and visceral adipose tissue blood flow expressed per kilogram and minute was impaired in the obese subjects, compared with the nonobese (P < 0.05). Fat masses measured with magnetic resonance images were higher in obese than in nonobese individuals. If regional glucose uptake rates were expressed as per total fat mass, total glucose uptake rates per depot were similar in obese and nonobese subjects and represented 4.1% of whole-body glucose uptake in obese and 2.6% in nonobese subjects (P < 0.02 between the groups). In conclusion, insulin-stimulated glucose uptake per kilogram fat is higher in visceral than in sc adipose tissue. Glucose uptake and blood flow in adipose tissue exhibit insulin resistance in obesity, but because of the larger fat mass, adipose tissue does not seem to contribute substantially to the reduced insulin stimulated whole-body glucose uptake in obesity.  相似文献   

7.
8.
A comparison has been made of the uptake of palmitate and triglyceride into human adipose tissue. Both substrates are converted into tissue lipid at similar rates over an incubation period of 2 hr; the uptake of triglyceride is proportional to the amount of tissue in the incubation medium. The assimilation of triglyceride by human adipose tissue requires preincubation of the triglyceride emulsion with serum; depends on the presence of glucose in the incubation medium; and radioactivity from glyceryl-tripalmitin-T is incorporated in preference to 14C-glyceryl-tripalmitin. Fasting reduced both the uptake of triglyceride into tissue lipid and the esterification of palmitate by the tissue. Fluoride (20 mM) significantly inhibits the esterification of palmitate by human adipose tissue without altering the incorporation of triglyceride. At higher concentrations of fluoride (80 mM) there is some inhibition of triglyceride uptake.  相似文献   

9.
OBJECTIVE: The aim of this study was to investigate whether DHEA alters the proliferation and differentiation of human sc and visceral adipose cells in primary cultures. METHOD: Sc and omental adipose tissue was obtained from 10 female donors aged 36+/-3.6 yr with a body mass index (BMI) of 33+/-3.21 kg/m2. Stromal vascular cells were isolated and cultured using modified procedures described by Entenmann and Hauner. For the proliferation assay, stromal-vascular cells from sc and visceral adipose tissue cultures were fed with proliferation media containing 0, 25 or 100 microM DHEA for 3 days. At the end of this treatment period, two type cultures were prepared for determining their metabolic activity using the sulforhodamine B staining procedure. RESULTS: The metabolic activity of proliferating human visceral adipose tissue was higher than sc adipose tissue. The activity of proliferating human visceral tissue cultures decreased more than the sc tissue as the level of DHEA in the cultures was increased. CONCLUSIONS: These data suggest that DHEA predominantly influences the proliferation and differentiation of human omental adipose tissue.  相似文献   

10.
Mounting evidence exists for a role of the CRH system in energy balance, including a direct influence on human adipocytes, the regulation of adipose 11 beta-hydroxysteroid dehydrogenase type 1 activity, and cortisol formation. We characterized the expression of CRH receptors 1 and 2 and CRH-like peptides stresscopin and urocortin in human adipose tissue in comparison with other peripheral tissues, adrenal, and heart. The effect of CRH on CRH receptor and CRH-like peptide expression was analyzed in isolated human adipocytes using quantitative TaqMan PCR. CRH receptors were detectable in fat tissue at mRNA and protein levels. CRH-R2 expression in fat was comparable with its expression in the heart, the organ with the highest CRH-R2 expression known. CRH-R1:CRH-R2 ratio varied according to fat-depot type; whereas CRH-R1 expression was higher in sc fat than in visceral fat, the opposite was true for CRH-R2. Adipose tissue also expressed urocortin and stresscopin, the predominant ligands of peripheral CRH-R2. CRH down-regulated CRH-R1 and CRH-R2 mRNA expression in isolated adipocytes. These data, together with the recently published observation that CRH regulates adipocyte metabolism by down-regulating 11 beta-hydroxysteroid dehydrogenase, indicate that a CRH system exists within human adipose tissue. This system could be implicated in energy homeostasis and in mediating the anorexic effects of CRH at adipose level.  相似文献   

11.
Assay of adenosine in human adipose tissue   总被引:1,自引:0,他引:1  
A method is described to assay the adenosine content of human adipose tissue. Tissue pieces of 10-20 mg were frozen within 1 sec of excision by a conchotome. The pieces were pooled and ground in liquid nitrogen, divided into samples weighing 50-100 mg each and placed in perchloric acid. Neutralized defatted extracts were treated by Dowex AG-1 to remove nucleotides and lyophilized. The adenosine content was measured by RIA using antiserum raised against laevulinic acid (0(2'),3'-adenosine-acetal)-albumin conjugate. The adenosine content in human abdominal sc adipose tissue was 0.56 +/- 0.08 nmol/g of tissue (mean +/- SEM). This shows that adenosine is present in human adipose tissue at concentrations that have been shown to have regulatory effects on cAMP accumulation and lipolysis.  相似文献   

12.
OBJECTIVE: To examine and compare in vitro basal and insulin-stimulated glucose uptake in human omental and subcutaneous adipose tissue derived from lean, overweight or obese individuals, and in those with central or peripheral obesity. DESIGN: In vitro study of basal and insulin-stimulated 2-deoxyglucose uptake in human omental and subcutaneous adipose tissue explants derived from patients undergoing elective abdominal surgery. SUBJECTS: Fourteen lean (average age 47 y, average body mass index (BMI) 22 kg/m(2)), 12 overweight (average age 51 y, average BMI 27 kg/m(2)), and 15 obese subjects (average age 45 y, average BMI 39 kg/m(2)). Ten peripherally obese (average age 43 y, average WHR 0.76) and 17 centrally obese (average age 50 y, average waist-to-hip ratio (WHR) 0.92). MEASUREMENTS: Fatness and fat distribution parameters (by anthropometry), basal and insulin stimulated [(3)H]-2-deoxyglucose uptake in omental and subcutaneous adipose tissue explants. RESULTS: In adipose tissue from lean subjects transport of 2-deoxyglucose over basal was stimulated approximately two-fold by insulin. In contrast, 2-deoxyglucose transport in adipose tissue of obese or overweight subjects was not responsive to insulin. Following incubation with 100-nM insulin for 35 min, insulin-stimulated 2-deoxyglucose transport was significantly lower in both omental and subcutaneous adipose tissue of obese and overweight compared to lean subjects. Basal 2-deoxyglucose uptake was also significantly reduced in omental and subcutaneous tissue in obese compared to lean subjects. Depot-specific differences in 2-deoxyglucose uptake were also seen. Overall 2-deoxyglucose uptake was greater in omental than subcutaneous adipose tissue but this was due to increased basal levels rather than increased insulin action. The reduction in insulin-stimulated 2-deoxyglucose uptake seen in overweight and obese subjects was relatively similar in both depots. However, insulin responsive 2-deoxyglucose transport was significantly lower in the omental adipose tissue of subjects with central obesity, as compared to that of subjects with peripheral obesity. No difference in insulin induced 2-deoxyglucose transport was observed in the subcutaneous adipose tissue explants of subjects with either central or peripheral obesity. CONCLUSION: In lean individuals insulin responsiveness of omental and subcutaneous adipose tissue was similar, but basal glucose uptake was significantly higher in omental adipose tissue. Adipose tissue obtained from overweight as well as obese individuals is insulin resistant. This insulin resistance occurs at a lower BMI than previously expected and is not adipose-depot specific. However, in obese subjects with a central distribution of adiposity insulin resistance occurs at the site of omental adipose tissue, in contrast to those with peripheral obesity.  相似文献   

13.
Integrative physiology of human adipose tissue   总被引:8,自引:0,他引:8  
Adipose tissue is now recognised as a highly active metabolic and endocrine organ. Great strides have been made in uncovering the multiple functions of the adipocyte in cellular and molecular detail, but it is essential to remember that adipose tissue normally operates as a structured whole. Its functions are regulated by multiple external influences such as autonomic nervous system activity, the rate of blood flow and the delivery of a complex mix of substrates and hormones in the plasma. Attempting to understand how all these factors converge and regulate adipose tissue function is a prime example of integrative physiology. Adipose tissue metabolism is extremely dynamic, and the supply of and removal of substrates in the blood is acutely regulated according to the nutritional state. Adipose tissue possesses the ability to a very large extent to modulate its own metabolic activities, including differentiation of new adipocytes and production of blood vessels as necessary to accommodate increasing fat stores. At the same time, adipocytes signal to other tissues to regulate their energy metabolism in accordance with the body's nutritional state. Ultimately adipocyte fat stores have to match the body's overall surplus or deficit of energy. This implies the existence of one (or more) signal(s) to the adipose tissue that reflects the body's energy status, and points once again to the need for an integrative view of adipose tissue function.  相似文献   

14.
BACKGROUND: Although insulin resistance is well established in hyperthyroidism, information on the effects of insulin on adipose tissue (AD) is limited. METHODS: To investigate this, a meal was given to 12 hyperthyroid (HR) and 10 euthyroid (EU) subjects. Blood was withdrawn for 360 min from veins draining the anterior abdominal sc AD and from the radial artery. Blood flow was measured with 133Xe. Lipoprotein lipase (LPL) was calculated as triglyceride flux across AD, and AD-lipolysis was calculated as glycerol flux minus LPL. RESULTS: Both groups displayed comparable postprandial glucose levels, with the HR having higher insulin levels than the EU. In AD of HR vs. EU: 1) blood flow was increased [area under curve 0-360 min (milliliters per 100 milliliters of tissue); 1746 +/- 208 vs. 1344 +/- 102, P = 0.001], but glucose uptake was normal [area under curve 0-360 min (micromoles per 100 milliliters of tissue); 501 +/- 114 vs. 368 +/- 48]; 2) fasting rates of lipolysis (nanomoles per minute per 100 milliliters of tissue; 329 +/- 75 vs. 89 +/- 22, P = 0.02) and nonesterified fatty acid (NEFA) release (nanomoles per minute per 100 milliliters of tissue; 841 +/- 146 vs. 316 +/- 97, P = 0.01), and plasma NEFA levels (micromoles per liter; 623 +/- 50 vs. 454 +/- 57, P = 0.03) were increased, but were all rapidly suppressed to levels similar to those in EU after the increase in plasma insulin levels after the meal; and 3) LPL was not stimulated by insulin. CONCLUSIONS: In hyperthyroidism, AD lipolysis and glucose uptake are resistant to insulin. The defect in lipolysis is manifested in the fasting state, whereas postprandially this rate is rapidly suppressed to normal. This may relieve tissues from the burden of NEFAs after the meal, thus facilitating muscle glucose disposal by insulin.  相似文献   

15.
16.
In vivo rates of glucose uptake, insulin-responsive glucose transporter (GLUT4) content, and activities of glycolytic enzymes were determined in brown adipose tissue (BAT) from rats adapted to a high-protein, carbohydrate-free (HP) diet. Adaptation to the HP diet resulted in marked decreases in BAT glucose uptake and in GLUT4 content. Replacement of the HP diet by a balanced control diet for 24 hours restored BAT glucose uptake to levels above those in rats fed the control diet, with no changes in GLUT4 levels in 4 of 5 animals examined. BAT denervation of rats fed the control diet induced a 50% reduction in glucose uptake, but did not significantly affect the already markedly reduced BAT hexose uptake in HP diet-fed rats. It is suggested that the pronounced decrease in BAT glucose uptake in these animals is due to the combined effects of the HP diet-induced reductions in plasma insulin levels and in BAT sympathetic activity. Adaptation to the HP diet was accompanied by decreased activities of hexokinase, phosphofructo-1-kinase, and pyruvate kinase (PK). The activity of BAT PK in HP diet-fed rats was reduced to about 50% of controls, and approached normal levels 24 hours after diet reversion. BAT denervation induced a small (15%) decrease in BAT PK activity in control rats, but did not affect the activity of the enzyme in HP diet-adapted rats. Also, denervation did not interfere with the restoration of PK activity induced by diet substitution. Treatment with anti-insulin serum resulted in an almost 50% reduction in PK activity in both innervated and denervated BAT from rats fed the control diet, but caused a much smaller ( thick approximate 20%) decrease in BAT from HP diet-fed rats. Furthermore, anti-insulin serum administration completely suppressed the restoration of BAT PK activity induced by diet reversion. These data suggest that, differently from glucose uptake, BAT PK activity is predominantly controlled by hormonal/metabolic factors.  相似文献   

17.
18.
19.
L-Triiodothyronine induces malic enzyme in explants from human adipose tissue. Consequently, we looked for the presence of receptors for L-triiodothyronine in nuclei isolated from human adipose tissue. The binding of 125I-triiodothyronine by the nuclei was time- and temperature-dependent. At 37 degrees C binding reached a steady state after 60 minutes. Dithiothreitol enhanced total binding and suppressed nonspecific binding. Scatchard analysis showed the presence of a single class of binding sites. The apparent association constant, Ka, was 0.13 +/- 0.03 X 10(10) M-1, the maximal binding capacity 2.20 +/- 0.81 pmol/mg DNA (mean +/- SD, n = 7) and the number of binding sites 8,000/nucleus. L-Triiodothyronine and D-triiodothyronine had equal affinity to the nuclear receptor; triiodothyroacetic acid had three times higher affinity. L- and D-thyroxine had 8% and 12%, respectively, and tetraiodothyroacetic acid had 19% affinity compared to that of L-triiodothyronine. Reverse triiodothyronine was a weak competitor. Digestion of nuclei with micrococcal nuclease abolished specific binding. These results show that nuclei from human white adipose tissue possess high affinity receptors for L-triiodothyronine, which are associated with nuclear chromatin. It is likely that induction of malic enzyme in human adipose tissue by L-triiodothyronine is mediated by the nuclear receptors.  相似文献   

20.
Acc2-/- mutant mice, when fed a high-fat/high-carbohydrate (HF/HC) diet, were protected against diet-induced obesity and diabetes. To investigate the role of acetyl-CoA carboxylase 2 (ACC2) in the regulation of energy metabolism in adipose tissues, we studied fatty acid and glucose oxidation in primary cultures of adipocytes isolated from wild-type and Acc2-/- mutant mice fed either normal chow or a HF/HC diet. When fed normal chow, oxidation of [14C]palmitate in adipocytes of Acc2-/- mutant mice was approximately 80% higher than in adipocytes of WT mice, and it remained significantly higher in the presence of insulin. Interestingly, in addition to increased fatty acid oxidation, we also observed increased glucose oxidation in adipocytes of Acc2-/- mutant mice compared with that of WT mice. When fed a HF/HC diet for 4-5 months, adipocytes of Acc2-/- mutant mice maintained a 25% higher palmitate oxidation and a 2-fold higher glucose oxidation than WT mice. The mRNA level of glucose transporter 4 (GLUT4) decreased several fold in the adipose tissue of WT mice fed a HF/HC diet; however, in the adipose tissue of Acc2-/- mutant mice, it was 7-fold higher. Moreover, lipolysis activity was higher in adipocytes of Acc2-/- mutant mice compared with that in WT mice. These findings suggest that continuous fatty acid oxidation in the adipocytes of Acc2-/- mutant mice, combined with a higher level of glucose oxidation and a higher rate of lipolysis, are major factors leading to efficient maintenance of insulin sensitivity and leaner Acc2-/- mutant mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号