首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure of trichloronitromethane has been studied in the gas phase using electron diffraction data. The molecules are found to undergo low barrier rotation about the CN bond with a planar CNO2 moiety in agreement with HF/MP2/B3LYP/6-311G(d,p) calculations. The experimental data are consistent with a dynamic model using a potential function for the torsion of V = (V6/2)(1 − cos 6τ). The major geometrical parameters (rg and ) for the eclipsed form, obtained from least squares analysis of the data are as follows: r(NO3) = r(NO4) = 1.213(2) Å, r(CN) = 1.592(6) Å, r(CCl)av = 1.749(1) Å, Cl5CN/Cl6CN = 109. 6°/106.3°(2), O3NC/O4NC = 117. 6°/114.1°(4), τCl5C1N2O3 = 0.0°, and V6 = 0.20(25) kcal/mol.  相似文献   

2.
The effect of temperature on absorption and fluorescence spectra of N,N-dimethylaniline (DMA) in ethyl acetate has been studied for temperature ranging from 293 to 388 K. The permittivity ε and refractive index n of the solvent decrease with temperature increase and the absorption and fluorescence bands are blue shifted (so-called “thermochromic shift”). Based on this phenomenon, the dipole moment μe in the excited singlet state and the Onsager interaction radius a for DMA were determined using the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621; 18a (1963) 10, 256].

For the known dipole moment in the ground state μg = 1.61 D and for /a3 = 0.54 ( is the polarizability of the solute) the average value of μe = 3.55 D and a = 3.1 Å were determined. The obtained values for DMA are compared with the experimental values determined by other authors.  相似文献   


3.
A coordination polymer was synthesized by the reaction of CoCl2 with 1,2,4-triazole-5-one (TO) and charaterized by means of IR and TG–DTG. Single-crystal structure analysis showed that the complex crystallized in the monoclinic space group C2/c: a = 23.105(9) Å, b = 3.5683(2) Å, c = 13.589(6) Å,  = 90°, β = 124.038(4)°, γ = 90°, V = 928.4(7) Å3, Z = 4. The standard molar enthalpy of formation of the complex was determined to be (−1034.28 ± 0.95) kJ mol−1.  相似文献   

4.
Two nickel (imidazole) complexes, Ni(im)6Cl2·4H2O (1) and Ni(im)6(NO3)2 (2) (im=imidazole) have been synthesized and characterized by elemental analysis, IR, UV, TG and single crystal X-ray diffraction. 1 crystallizes in the triclinic space group P-1 with a=8.800(6) Å, b=9.081(6) Å, c=10.565(7) Å, =75.058(9)°, β=83.143(8)°, γ=61.722(8)°, V=718.3(8) Å3, Z=1 and R1 (wR2)=0.0469 (0.1497). 2 crystallizes in the trigonal space group R-3 with a=12.370(6) Å, b=12.370(6) Å, c=14.782(14) Å, =90.00°, β=90.00°, γ=120.00°, V=1959(2) Å3, Z=3 and R1 (wR2)=0.0358 (0.0955). 1 and 2 exhibit different supramolecular network due to their different counter anions and different hydrogen bonding connection. In compound 1, [Ni(im)6]2+ cation and counter anions Cl alternatively array in an ABAB fashion via N–HCl hydrogen bonding. In compound 2, the plane of each NO32− is almost parallel and each NO32− connect three different [Ni(im)6]2+ cations via N–HO hydrogen bonding.  相似文献   

5.
Synthesis, structure, spectroscopy and thermal properties of complex [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4] (H2O) (I), assembled by hexamethylenetetramine and octahedral Co(II) metal ions, are reported. Crystal data for I: Fw 387.34, a=9.020(8), b=12.887(9), c=7.95(1) Å, =96.73(4), β=115.36(5), γ=94.16(4)°, V=820(1) Å3, Z=2, space group=P−1, T=173 K, λ(Mo-K)=0.71070 Å, ρcalc=1.718567 g cm−3, μ=17.44 cm−1, R=0.088, Rw=0.148. An interesting two-dimensional network is assembled via hydrogen bonds through coordinated and free water molecules. The d–d transition energy levels of Co(II) ion are determined by UV–vis spectroscopy and calculated by ligand field theory. The calculated results agree well with experiment ones.  相似文献   

6.
CdII complexes with glycine (gly) and sarcosine (sar) were studied by glass electrode potentiometry, direct current polarography, virtual potentiometry, and molecular modelling. The electrochemically reversible CdII–glycine–OH labile system was best described by a model consisting of M(HL), ML, ML2, ML3, ML(OH) and ML2(OH) (M = CdII, L = gly) with the overall stability constants, as log β, determined to be 10.30 ± 0.05, 4.21 ± 0.03, 7.30 ± 0.05, 9.84 ± 0.04, 8.9 ± 0.1, and 10.75 ± 0.10, respectively. In case of the electrochemically quasi-reversible CdII–sarcosine–OH labile system, only ML, ML2 and ML3 (M = CdII, L = sar) were found and their stability constants, as log β, were determined to be 3.80 ± 0.03, 6.91 ± 0.07, and 8.9 ± 0.4, respectively. Stability constants for the ML complexes, the prime focus of this work, were thus established with an uncertainty smaller than 0.05 log units. The observed departure from electrochemical reversibility for the Cd–sarcosine–OH system was attributed mainly to the decrease in the transfer coefficient . The MM2 force field, supplemented by additional parameters, reproduced the reported crystal structures of diaqua-bis(glycinato-O,N)nickel(II) and fac-tri(glycinato)-nickelate(II) very well. These parameters were used to predict structures of all possible isomers of (i) [Ni(H2O)4(gly)]+ and [Ni(H2O)4(sar)]+; and (ii) [Ni(H2O)3(IDA)] and [Ni(H2O)3(MIDA)] (IDA = iminodiacetic acid, MIDA = N-methyl iminodiacetic acid) by molecular mechanics/simulated annealing methods. The change in strain energy, ΔUstr, that accompanies the substitution of one ligand by another (ML + L′ → ML′ + L), was computed and a strain energy ΔUstr = +0.28 kcal mol−1 for the reaction [Ni(H2O)4(gly)]+ + sar → [Ni(H2O)4(sar)]+ + gly was found. This predicts the monoglycine complex to be marginally more stable. By contrast, for the reaction [Ni(H2O)3IDA] + MIDA → [Ni(H2O)3MIDA] + IDA, ΔUstr = −0.64 kcal mol−1, and the monoMIDA complex is predicted to be more stable. This correlates well with (i) stability constants for Cd–gly and Cd–sar reported here; and (ii) known stability constants of ML complex for glycine, sarcosine, IDA, and MIDA.  相似文献   

7.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

8.
The collisional behaviour of Ba[6s5d(3DJ)], 1.151 eV above the 6s2(1S0) electronic ground state, in the presence of atomic strontium, has been investigated in the ‘long-time domain' (ca. 100 μs–1 ms) following the pulsed dye-laser excitation of barium vapour at elevated temperature at λ = 553.5 nm (Ba[6s6p(1P1)] ← Ba[6s2(1S0)]. Ba(3DJ) is subsequently produced from the short-lived 1P1 state (τe = 8.37 ± 0.38 ns) by a number of radiative and collisional processes. It may then be monitored in the ‘long-time domain' by atomic spectroscopic marker methods involving either collisional activation of Ba(3DJ) by Ba(1S0) and He buffer gas to yield Ba[6s6p(3PJ)] with subsequent emission from the 3P1 state (τe = 1.2 ± 0.1 μs): Ba[6s6p(3P1)] → Ba[6s2(1S0)] + hv (λ = 791.1 nm). Alternatively, emission from Ba(1P1) may be monitored at long times following the generation of this short-lived state by energy pooling following self-annihilation of Ba(3DJ) + Ba(3DJ) from Ba[6s6p(1P1)] → Ba[6s2(1S0)] + hv (λ = 553.5 nm). The generation of Ba(3DJ) in the presence of atomic strontium yields emission in the long-time domain from Sr[5s5p(3P1)] (τe = 19.6 μs): Sr[5s5p(3P1)] → Sr[5s2(1S0)]  + hv (λ = 689.3 nm). Whilst the decay profiles at short times are complex in form, at long times all these atomic profiles show first-order kinetic removal with the decay coefficients for λ = 791.1 nm, 689.3 nm and 553.5 nm emissions in the ratio 1 : 2 : 2, consistent with overall third-order activation of the form: Ba(3DJ) + Ba(3DJ) + Sr(1S0) → Sr(3PJ) + 2Ba(1S0). The mechanism is modelled in detail, including measurement of integrated emission intensities, yielding kinetic data for fundamental collisional processes. The overall rate constant for the third-order collisional activation of Sr[5s5p(3PJ])from 2Ba[6s5d(3DJ)] + Sr[5s2(1S0)] takes the upper limit of 5.8 × 10−27 cm6 atom−2 s−1 (T = 900 K). The rate constant for the two body collisional quenching of Ba[6s5d(3DJ)] by ground state atomic strontium, Sr[5s2(1S0)], is found to be (2.0 ± 0.1) × 10−12 cm3 atom−1 s−1 (T = 900 K).  相似文献   

9.
Photoacoustic calorimetry (PAC) allows measurement of the energetics of reactive intermediates. Here, we report the examination of the metal carbonyl η5-CpMn(CO)3 (Cp, cyclopentadiene) via time-independent PAC, in a homologous series of solvents. The measured heat releases allow one to determine simultaneously the enthalpy and volume change resulting from the photodissociation of CpMn(CO)3. While the photoacoustic signal results from both of these processes, it has often been assumed that the volume change contribution to the observed photoacoustic signal is negligible for small molecules undergoing photodissociation. The current study tests the assumption of a negligible reaction volume by using a more complete treatment. The reaction of an equimolar number of photons and CpMn(CO)3 molecules, the subsequent photodissociation of the Mn–CO bond, and the ligation of a solvent molecule in an alkane solvent yields ΔHobs = 32.7 ± 0.7 kcal/mol and ΔVchem = 11.0 ± 1.3 mL/mol, both of which are independent of the quantum yield of photodissociation. A detailed analysis of the quantum yield is included (using both previously reported measurements, and new data from this work), from which we determine Φdiss = 0.635. This quantum yield allows us to determine ΔHrxn = 51.6 kcal/mol and ΔVrxn = 17.3 mL/mol. These results demonstrate that if the contribution of the reaction volume change to the photoacoustic signal is ignored, the reaction enthalpy derived would underestimate the true value by 7%. We also estimate the BDE{Cp(CO)2Mn–CO} to be 59.4 kcal/mol.  相似文献   

10.
The disruption of lipidic metabolism was considered a good candidate to explain FB1 toxicity mechanism. In the present work we investigated molecular organizational changes induced by FB1–biomembrane interaction possibly involved in mycotoxic effects.

FB1 was self-aggregated with a critical micellar concentration of 1.97 mM. FB1 (0–81.4 μM), decreased in a dose-dependent manner, the fluorescence anisotropy of TMA-DPH (from 0.349 ± 0.003 to 0.1720 ± 0.0035) in dpPC bilayers, whilst no differences were registered with DPH. At 5.6 μM in the subphase, FB1 increased the lateral surface pressure (π) of a Langmuir film to an extent that depended on the monolayer composition (ΔπdpPC:DOTAP 3:1 > ΔπdpPC:dpPA3:1 > ΔπdpPC), the molecular packing (Δπ decreased linearly as a function of the initial π) and the subphase pH (ΔπpH 2.6 > ΔπpH 7.4 and maximal π allowing the drug penetration πcut-off was 34.3 and 27.7 mN/m at pH 2.63 and 7.4, respectively). FB1 increased the surface potential of dpPC and dpPC:DOTAP monolayers and decreased that of dpPC:dpPA. This suggested that FB1 acquired different orientations and/or foldings depending on the surface electrostatics and the toxin charge state. Moreover, FB1–lipid interactions were transduced into long-range effects at the mesoscopic level affecting the lipidic self-separated lateral domains shape and density.  相似文献   


11.
The structure and texture characteristics of the hybrid organic–inorganic adsorbents, which were obtained by using of two-component systems of “structure-forming agent/trifunctional silane”, are compared as follows: the first component is Si(OC2H5)4 or (C2H5O)3Si–A–Si(OC2H5)3, where A = –(CH2)2– or –C6H4–; the second one is alkoxysilane with amine (–NH2, NH, –NH(CH2)2NH2) and thiol (–SH) groups. The adsorbents, derived from TEOS, have more accessible functional groups (2.6–4.2 mmol/g) than xerogels, which are based on bis(triethoxysilanes) (1.0–2.6 mmol/g). On another hand xerogels derived from bis(triethoxysilanes) have a more extended porous structure (Ssp =516–968 m2/g, Vs = 0.418–1.490 cm3/g, d = 2.5–15.0 nm) than those that are based on TEOS (Ssp = 4–631 m2/g, Vs = 0.005–1.382 cm3/g, d = 2.3–17.7 nm). The geometric dimensions of functional groups have a more essential effect on the parameters of porous structure in the case of TEOS-derived xerogels. Using solid-state NMR spectroscopy, it has been shown that in synthesis of xerogels with the use of TEOS, the molecular frame of globules is formed by structural units Qn (n = 2,3,4), and the functional groups exist as structural units of Tn (n = 2,3). The xerogels obtained with using bis(triethoxysilanes) consist only of structural units of Tn-type (n = 1,2,3).  相似文献   

12.
One novel chiral copper(II) complex was successfully synthesized from the reaction of chiral 1,3-thiazolidine-2-thione ligand with CuCl2 in dichloromethane in the presence of Et3N and DMAP at room temperature. Its unique crystal structure was unambiguously disclosed by X-ray analysis. The crystal is tetragonal, space group I4(1), space group a=15.0875(11), b=15.0875(11), c=19.362(3) Å, =90, β=90, γ=90°, V=4407.4(8) Å3, Z=8, ρcalc=1.639 mg cm−3.  相似文献   

13.
The molecular structure of 3-methylthiophene has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) - r(S=C5) and r(C2=C3)-r(C4 =C5) were fixed at the 3–21G* value of 0.002 Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   

14.
The molecular structure of 3-methylthiophene

has been determined by gas electron diffraction (GED) combined with microwave (MW) spectroscopic data. Ab initio calculations at the HF/3–21G* level were carried out and used as structural constraints in the data analysis. The torsional vibration of the methyl group was treated as a large-amplitude motion. The structural parameters were determined to be: rg(S---C2) = 1.719(2) Å, rg(C2=C3) = 1.370(3) Å, rg(C3---C6) = 1.497(6) Å, rg(C2---H) = 1.101(5) Å, CSC = 91.6(2)°, SC2C3 = 113.3(5)°, SC5C4 = 111.3(3)°, C2C3C6 = 123.2(11)° and C3C6H = 112(2)°. The values of r(S---C2) − r(S---C5) and r(C2=C3) − r(C4=C5) were fixed at the 3–21G* value of 0.002Å. Parenthesized values are the estimated limits of error (3σ) referring to the last significant digit.  相似文献   


15.
Becke 3-Lee–Yang–Parr density functional theory (DFT/B3LYP) using 6-31G(d) and 6-311G(d) basis sets and the scaled quantum mechanics (SQM) force field method are used to study molecular conformations and vibrational spectra of a model compound of vitamin K (VK). In this molecule, there are six conformers on the torsional potential energy map of the dihedral angles C8C14C15C16 () and C7C8C14C15 (β). It is shown that the VK_1 conformer ( = 237.7° and β = 274.2°) is the most stable form. For this lowest energy conformer, the harmonic force fields calculated by B3LYP/6-311G(d) and B3LYP/6-31G(d) methods are scaled with one scale factor of 0.9623 and a set of different scale factors transferred from the previous studies for the other similar molecules, respectively. The vibrational frequencies, IR intensities, and Raman activities are obtained for the lowest energy conformer. On the basis of B3LYP calculations, the normal mode analysis is performed to assign the vibrational fundamental frequencies according to the potential energy distributions. The computational frequencies are in good agreement with the observed results.  相似文献   

16.
Triphenyltelluronium hexachloroplatinate (1), hexachloroiridate (2), tetrachloroaurate (3), and tetrachloroplatinate (4) were prepared from Ph3TeCl and potassium salts of the corresponding anions. Upon recrystallization of 4 from concentrated nitric acid, K2[PtCl6] and (Ph3Te)(NO3)·HNO3 (5) were obtained. The crystal structures of 1–3 and 5 are reported. Compounds 1 and 2 are isostructural. They are triclinic, P , Z=2 (the asymmetric unit contains two formula units). Compound 1: a=10.7535(2), b=17.2060(1), c=21.4700(3) Å, =78.9731(7), β=77.8650(4), γ=78.8369(4)°. Compound 2: a=10.7484(2), b=17.1955(2), c=21.4744(2) Å, =78.834(1), β=77.649(1), γ=78.781(1)°. Compound 3 is monoclinic, P21/c, Z=4, a=8.432(2), b=14.037(3), c=17.306(3) Å, β=93.70(3)°. Compound 5 is monoclinic. P21/n, Z=4, a=9.572(2), b=14.050(3), c=13.556(3) Å, β=90.76(3)°. The primary bonding in the Ph3Te+ cation in each salt is a trigonal AX3E pyramid with Te---C bond lengths in the range 2.095(8)–2.14(2) Å and the bond angles 94.1(6)–100.9(5)°. The weak TeCl (1–3) and TeO (5) secondary interactions expand the coordination sphere. In 1 and 2 the cation shows a trigonal bipyramidal AX3YE coordination with one primary Te---C bond and the shortest secondary TeCl contact in axial positions and the two other Te---C bonds and the lone-pair in equatorial positions. The cation in 3 shows a distorted octahedral AX3Y3E environment and that in 5 is a more complex AX3Y3Y′2 arrangement. In both latter salts the structure is a complicated three-dimensional network of cations and anions.  相似文献   

17.
Three interpenetrated polymeric networks, {[Co(bpp)(OH-BDC)] · H2O}n (1) [Ni(bpp)1.5(H2O)(OH-BDC)]n (2) and {[Cd(bpp)(H2O)(OH-BDC)] · 2H2O}n (3), have been prepared by hydrothermal reactions of 1,3-bis(4-pyridyl)propane (bpp), 5-hydroxyisophthalic acid (OH-H2BDC), with Co(NO3)2 · 6H2O, Ni(NO3)2 · 6H2O and Cd(NO3)2 · 4H2O, respectively. Single-crystal X-ray diffraction analyses reveal that the three compounds all exhibit interpenetrated but entirely different structures. Compound 1 is a fourfold interpenetrated adamantanoid structure with water molecules as space fillers, in which bpp adopts a TG conformation (T = trans, G = gauche). Compound 2 is an interdigitated structure from the interpenetrated long arms of one-dimensional molecular ladders, while bpp in 2 adopts both TT and TG conformations. Compound 3 is a twofold interpenetrated three-dimensional network from a one-dimensional metal-carboxylate chain bridged by TG conformational bpp. The hydrogen bonding interactions in 1–3 further stabilize the whole structural frameworks and play critical roles in their constructions.  相似文献   

18.
Anomalous electric birefringence signals of a sonicated and column-fractionated medium-size calf thymus DNA sample (bp  =  570) in Na+ solutions were measured at 7 °C. The reversing-pulse electric birefringence (RPEB) signal pattern was theoretically calculated in the low electric field region for two axially symmetric models coexisting in equilibrium in solution. The RPEB theory is based on the electric dipole moment due to ion-fluctuation along the longitudinal direction and the electric polarizability anisotropy (Δ′), together with various electric and optical parameters assigned to the models. An analytical method was developed for the steady-state birefringence of the two-component system in a wide range of electric fields. The NaDNA samples exhibit complex RPEB patterns mixed with negative- and positive-going profiles. An experimental RPEB signal of NaDNA at an absorbance (A260) of 8 was fitted to theoretical curve at weak electric fields. The anomalous RPEB signal was attributed to the component 2, which shows a dip in the buildup and another in the reverse processes with a positive sign and a larger relaxation time. For the component 1, a normal DNA profile with negative sign is associated with a narrow dip in the reverse and a faster relaxation time in the decay signal. The field-strength dependence of observed steady-state birefringence δ(∞) could be fitted for NaDNA at A260  =  8 by the SUSID orientation function with saturated ionic and electronic moments. An apparent positive maximum and the sign reversal in δ(∞) at weak electric fields is an interplay between the positive component 2 with positive optical factor Δg and negative Δ′ and the negative component 1 with negative Δg and positive Δ′. Possible conformation of two DNA components involved in solution was estimated.  相似文献   

19.
With a hydrothermal technique, a layered titanium phosphate with the formula Ti2(H2PO4)(HPO4)(PO4)2 · 0.5C6N2H16 (denoted TP-J2) has been prepared by treating the Ti/H3PO4/H2O/1-methylpiperazine system directly. The as-synthesized products were characterized by powder X-ray diffraction, CP-MAS solid-state 31P NMR spectroscopy, thermogravimetric and differential thermal analyses (TG-DTA). The structure was solved by single-crystal X-ray diffraction analysis and it presents an extended γ-phase intercalated with organic amine. Crystal data: triclinic, , a = 8.106 (2) Å, b = 8.197 (2) Å, c = 11.658 (2) Å.  = 78.32 (3)°, β = 80.85 (3)°, γ = 77.90 (3)°, Z = 2. Additionally, the intercalation behavior of TP-J2 with n-alkyl monoamine (n = 2, 3, 4, 6, 8, 10 and 12) was investigated. Owing to the strong brønsted base, N,N′-dimethylpiperazine, resides in the interlayer, it presented unusual features of TP-J2 in contrast with that of γ-Tip.  相似文献   

20.
Irena Szczygiel   《Thermochimica Acta》2001,370(1-2):125-128
The phase diagram of the system CePO4–K3PO4 has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K3Ce(PO4)2, which melts incongruently at (1500±20)°C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β-K3Ce(PO4)2 crystallizes in a monoclinic system, space group P21/m with unit cell parameters a=9.579 (5), b=5.634 (6), c=7.468 (5) Å; =γ=90°, β=90.81 (3)°; V=403.083 Å3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号