首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
濒危物种杏黄兜兰的保育生态学   总被引:7,自引:1,他引:6  
杏黄兜兰(Paphiopedilum armeniacum)是中国特有的兰科濒危物种。自2000年4月1日至2005年10月10日,在云南省怒山的落砂坡山选取66个调查点进行杏黄兜兰保育生态学研究:对443基株共1302分株进行了繁殖式样、物候和生命周期等主要生物学特性,以及对该物种的生境要求、群落结构特征等生态学习性进行了观察研究,并在广东省深圳进行迁地保护和迁地繁殖后重返原产地的试验,研究了原产地的气候、植被和其他环境因素与杏黄兜兰之间的关系以及杏黄兜兰迁地栽培和繁殖的无性后代重返原生长地的生物学特性。研究结果表明:落砂坡山的杏黄兜兰在石灰岩上的次生灌木丛或草丛内生长良好;它兼具有性和无性繁殖,无性繁殖的目的就是实现有性繁殖和延长基株的寿命;无性繁殖有二种形式:产生分蘖或根茎;灌木丛或草丛的落叶为杏黄兜兰生长提供腐殖质,杏黄兜兰根茎繁殖是它对落叶等覆盖的一种适应;分株的开花率为7.39%±1.02%,开花分株的结果率为32.23%±12.08%;杏黄兜兰具有入侵适度破坏和正处于恢复初期的森林环境的能力,而在茂密连片的大树森林内不能生长。杏黄兜兰在深圳人工疏林下生长良好并繁殖许多无性的克隆分株,将繁殖的克隆分株重返原产地能正常开花和结实。试验结果显示,杏黄兜兰可以进行迁地保护以保存种质资源和迁地繁殖的植株回归原产地。基于杏黄兜兰濒危机制的分析,认为,杏黄兜兰生存所面临的威胁是生长空间被完全剥夺和人为灭绝性采集而不是其自身存在的生物学缺陷,为此,提出了相应的保育对策。  相似文献   

2.
R M Binks  M A Millar  M Byrne 《Heredity》2015,115(3):235-242
For plants with mixed reproductive capabilities, asexual reproduction is more frequent in rare species and is considered a strategy for persistence when sexual recruitment is limited. We investigate whether asexual reproduction contributes to the persistence of two co-occurring, rare sedges that both experience irregular seed set and if their differing geographic distributions have a role in the relative contribution of clonality. Genotypic richness was high (R=0.889±0.02) across the clustered populations of Lepidosperma sp. Mt Caudan and, where detected, clonal patches were small, both in ramet numbers (⩽3 ramets/genet) and physical size (1.3±0.1 m). In contrast, genotypic richness was lower in the isolated L. sp. Parker Range populations, albeit more variable (R=0.437±0.13), with genets as large as 17 ramets and up to 5.8 m in size. Aggregated clonal growth generated significant fine-scale genetic structure in both species but to a greater spatial extent and with additional genet-level structure in L. sp. Parker Range that is likely due to restricted seed dispersal. Despite both species being rare, asexual reproduction clearly has a more important role in the persistence of L. sp. Parker Range than L. sp. Mt Caudan. This is consistent with our prediction that limitations to sexual reproduction, via geographic isolation to effective gene exchange, can lead to greater contributions of asexual reproduction. These results demonstrate the role of population isolation in affecting the balance of alternate reproductive modes and the contextual nature of asexual reproduction in rare species.  相似文献   

3.
Ludwigia hexapetala and L. grandiflora are recent, aggressive invaders of freshwater wetlands in California. To assess the relative role of sexual versus clonal reproduction in invasive spread, we used AFLP markers to genotype 794 ramets of L. hexapetala sampled from 27 populations in three watersheds of California, and 150 ramets of L. grandiflora from five populations in a fourth watershed. We then used two analytical methods, similarity thresholds and character incompatibilities, to distinguish genotypic variation within genets (clones) from variation between genets. Our analyses revealed extremely limited genotypic and genet variation in invasive L. hexapetala and L. grandiflora within California. Within L. hexapetala, 95% of the ramets analyzed represented a single genet. The genet was the only one detected in 20 populations. The remaining seven populations contained two to nine genets. Within L. grandiflora, all ramets were of only one genotype. Thus, invasive spread within and between populations, and across watersheds, appears to be almost exclusively clonal and brought about by the dispersal of vegetative propagules. The extremely low seedling recruitment indicates that management should target vegetative dispersal and growth.  相似文献   

4.
Clonality is a common phenomenon in plants, allowing genets to persist asexually for much longer periods of time than ramets. The relative frequency of sexual vs. asexual reproduction determines long‐term dominance and persistence of clonal plants at the landscape scale. One of the most familiar and valued clonal plants in North America is aspen (Populus tremuloides). Previous researchers have suggested that aspen in xeric landscapes of the intermountain west represent genets of great chronological age, maintained via clonal expansion in the near absence of sexual reproduction. We synthesized microsatellite data from 1371 ramets in two large sampling grids in Utah. We found a surprisingly large number of distinct genets, some covering large spatial areas, but most represented by only one to a few individual ramets at a sampling scale of 50 m. In general, multi‐ramet genets were spatially cohesive, although some genets appear to be fragmented remnants of much larger clones. We conclude that recent sexual reproduction in these landscapes is a stronger contributor to standing genetic variation at the population level than the accumulation of somatic mutations, and that even some of the spatially large clones may not be as ancient as previously supposed. Further, a striking majority of the largest genets in both study areas had three alleles at one or more loci, suggesting triploidy or aneuploidy. These genets tended to be spatially clustered but not closely related. Together, these findings substantially advance our understanding of clonal dynamics in western North American aspen, and set the stage for a broad range of future studies.  相似文献   

5.

Background and Aims

Many plants reproduce both clonally and sexually, and the balance between the two modes of reproduction will vary among populations. Clonal reproduction was characterized in three populations of the wild strawberry, Fragaria virginiana, to determine the extent that reproductive mode varied locally between sites. The study sites were fragmented woodlands in Cook County, Illinois, USA.

Methods

A total of 95 strawberry ramets were sampled from the three sites via transects. Ramets were mapped and genotyped at five variable microsatellite loci. The variability at these five loci was sufficient to assign plants to clones with high confidence, and the spatial pattern of genets was mapped at each site.

Key Results

A total of 27 distinct multilocus genotypes were identified. Of these, 18 genotypes were detected only once, with the remaining nine detected in multiple ramets. The largest clone was identified in 16 ramets. No genets were shared between sites, and each site exhibited markedly different clonal and sexual recruitment patterns, ranging from two non-overlapping and widespread genets to 19 distinct genets. Only one flowering genet was female; the remainder were hermaphrodites.

Conclusions

Local population history or fine-scale ecological differences can result in dramatically different reproductive patterns at small spatial scales. This finding may be fairly widespread among clonal plant species, and studies that aim to characterize reproductive modes in species capable of asexual reproduction need to evaluate reproductive modes in multiple populations and sites.Key words: Clonal structure, gynodioecy, Fragaria virginiana, microsatellites, population genetic structure  相似文献   

6.
Quercus crispula var. horikawae, a stunted shrub oak, occurs on mountains with deep snow on the Sea of Japan side of Japan. This oak generates patches of multiple creeping stems. It is unclear whether these patches are the result of asexual or sexual reproduction, or both. We therefore aimed to describe the clonal structure and gene flow in Q . crispula var. horikawae on Mount Nasu in central Japan by using nuclear microsatellites. Genotypes of 331 stems with no distinct connection with roots and creeping stems above the ground were determined using nine loci in two study plots, and 64 acorns from three mother genets in a plot were determined using eight loci. The results of the clonal identification indicated that the patches consisted of 51 genets; at least 85% of the stems may have been derived from asexual reproduction through sprouting and layering. The prominence of asexual reproduction may be a result of adaptation to the snowy environment. In contrast, 15% of the ramets in the study plots probably originate via sexual reproduction by seedling regeneration. Analyses of the spatial genetic structure and paternity showed that limited ability of the pollen and seeds to disperse might result in the spatial aggregations of closely related offspring at a relatively short distance (<10 m), and inbreeding, a factor that might reduce sexual reproduction, was not observed. Thus, sexual reproduction could be reduced by ecological rather than genetic factors, namely the hindrance of seedling regeneration by the dense coverage of dwarf bamboo (Sasa) on the forest floor.  相似文献   

7.
Clonal plant species often form genetically diverse populations, even when sexual reproduction in a population is rarely observed. Here we test whether the spatially discrete clusters of plants (tussocks of graminoids) formed within populations of some clonal species can likewise be multiclonal. We sampled leaves of ramets (shoots) within 20 tussocks of the grass Achnatherum splendens in the Otindag Sandland in Inner Mongolia, China, and genotyped the ramets using standard molecular protocols. The 20 tussocks were allocated to three classes: (i) small, circular, (ii) large, circular and (iii) large, irregular. Most tussocks (80%) were multiclonal and some contained at least eight different clones. Irregularly shaped tussocks contained twice as many clones as circular tussocks; neither size nor cover within a tussock affected number of clones per tussock, and the smaller clones in a tussock showed no tendency to occur on the edge or near the center of a tussock. These patterns seem more consistent with formation of multiclonal tussocks by coalescence than by colonization. Therefore, individual tussocks, especially large, irregular ones, cannot a priori be treated as genetic individuals without assessing their genetic information in, e.g., population demography, genetics and evolution studies.  相似文献   

8.
For plants capable of both sexual and clonal reproduction, the relative frequency of these reproductive modes is influenced by genetic and ecological factors. Acacia carneorum is a threatened shrub from the Australian arid zone that occurs as a set of small, spatially isolated populations. Sexual reproduction appears to be very rare: despite regular flowering, only two populations set seed. It is not known whether this reflects an ancient pattern, or results from rapid land use changes following arrival of Europeans in the region 150 years ago. We assessed genotypic variation throughout the range of A. carneorum using AFLP markers, to elucidate the relative importance of clonal and sexual reproduction in this species’ history. Clonal diversity (CD) within populations ranged from 0 to 0.820 (mean CD = 0.270, SE = 0.094), but the relative abundances of genets were typically highly skewed. On average, the two fruiting populations had higher CD (mean CD = 0.590, SE = 0.265) than non-fruiting populations (mean CD = 0.179, SE = 0.077) (t = 2.315, p = 0.049), but most populations contained multiple genets. All genets were population-specific, and there was substantial divergence among populations (Φ ST = 0.690), implying a long history of isolation. We conclude that clonality has predominated in A. carneorum populations, with occasional sexual recruitment, and that current failure of most populations to set seed likely reflects both a long history of asexual reproduction and effects of habitat disturbance. Conservation of this species may benefit from translocations to increase genotypic diversity within populations.  相似文献   

9.

Key message

Clonal delineation at nuclear microsatellites and phenotypic traits showed high correspondence and revealed an important role of both sexual and clonal reproduction for stand genetic structure.

Abstract

Quaking aspen (Populus tremuloides Michx.) grows throughout the northern and central portions of North America. Reproduction occurs both sexually via seeds and clonally from root suckers. Clonal delineation using morphological/phenological traits, and more recently, highly variable nuclear microsatellites have shown considerable variation in the size of clonal assemblies, and the relative importance of sexual versus clonal reproduction across the species range. In order to provide reliable estimates of genet size (N/G; ramets per sampled genet) and genotypic diversity (G/N; genets/ramets), and to compare genetic and phenotypic clone delineation, we characterized 181 sampled stems (ramets) at seven nuclear microsatellites, and morphological and phenological traits from six clones (genet size ≥11). Genotypic diversity was moderate (G/N = 0.18) and within the range reported in other studies across North America. Multivariate statistics revealed a high correspondence between genetic and phenotypic clone delineation, both with and without predefined genetic groups (94.2 %, 81.7 %). Moderate average genet size (5.6 ramets per genet) and the occurrence of genetically distinct single-ramet genets surrounded by larger genets suggested intermediate levels of sexual reproduction contributing to the genetic structure of this stand. Significant differences among genets were found for phenological and morphological traits such as bark thickness and leaf shape. However, most clones showed no significant differences in diameter growth which was likely caused by poor drainage in this high clay soil that inhibited the expression of genetic differences in growth.
  相似文献   

10.
Patterns of sexual reproduction and clonal growth were investigated in the understory palm Reinhardtia gracilis var. gracilior over a 3-yr period. R. gracilis is a very abundant clonal palm in the tropical rain forest of Los Tuxtlas, Veracruz, México. Because ramets form clumps, genets are easily identified in the field. Genets were monitored in a 0.5-ha area, and classified by size according to the number of ramets they possessed. In contrast to clonal growth, sexual reproduction was highly dependent on genet size. The probability of reproduction, the number of inflorescences, and the number of fruits produced were positively correlated with genet size. However, neither the probability of producing a ramet, nor the number of ramets produced per genet were correlated with genet size. Over the 3 yr of study, 55% of the genet population had at least one ramet with reproductive structures, while <1% (a single genet in one year) had six ramets with flowers. Thirty-two percent of the mature genets reproduced during each of three consecutive years. In contrast, 58% of the genets produced no new ramets during these 3 yr. No evidence was found of a trade-off between clonal growth and sexual reproduction. Ramet production increases genet size and this in turn increases genet reproductive performance. Clonal growth in this species may be viewed as a growth strategy that tends to maximize genet fitness.  相似文献   

11.
Clonal structure in clonal plants can affect sexual reproduction. Individual ramets can decrease reproduction if their neighbors are ramets of the same genet due to inbreeding depression or self-incompatibility. We assessed ramet reproductive success in the partial self-incompatible Ferocactus robustus (Cactaceae) as a function of floral display size in focal ramets and floral display size and clonal structure of their reproductive neighborhoods. Ramets were labeled, sized in number of stems, mapped and genetically identified through RAPD markers in one population. A pollen dispersal area of 15-m radius was established for each ramet to determine the clonal diversity in the neighborhoods. Flower production and fruit set were counted on a monthly basis during one reproductive season as a surrogate of ramet fitness. We expected a decrease in individual ramet reproductive success as a function of the number of reproductive ramets of the same genet in the neighborhood. A total of 272 sampled ramets revealed 116 multilocus genotypes, showing high clonal diversity in the population (G/N = 0.43, D = 0.98). Clonal diversity of neighborhoods ranged from 0.06 to 1 and fruit set varied from 0 to 76.9%. Individual ramet reproductive success was influenced by (1) mate availability, (2) floral display size of a genet within the reproductive neighborhood, and (3) the proportion of distinguishable genotypes. Floral display size of genets and ramets coupled with the genetic diversity within the reproductive neighborhood determines the low sexual reproduction in F. robustus.  相似文献   

12.
To understand the evolution of clonal reproduction and the diversity of clonal plants, it is necessary to clarify the characteristics of each clonal habit. There has been little research on whether bulbils alter spatial genetic structure (SGS) because of the lack of connection to maternal ramets. We used simple-sequence-repeat (SSR) markers to determine the fine-scale SGS of the dioecious plant Dioscorea japonica, which disperses both as bulbils and as seeds. We also evaluated the contributions of sexual and clonal reproduction and tested for spatial sex segregation (SSS). We discovered 111 genets from 394 ramets in a 2.8-ha plot. Genotypic richness (R = 0.28) and clonal diversity (Simpson’s D = 0.94, Fager’s E = 0.90) were high. We did not find SSS, suggesting that the population does not suffer from a shortage of mating pairs due to clonal reproduction. The Sp values revealed moderate SGS at the genet level (Sp = 0.013–0.014), and the genets intermingled at a local scale. Significant SGS at the ramet level showed that ramets within the same genet tended to aggregate. We also found a skewed clonal spatial distribution. The spatial extent of genets was positively correlated with the number of ramets within a genet. The contribution of bulbil production to the variance of parent–offspring gene dispersal was about one–fifth the contribution from sexual reproduction. These results suggest that the dispersal via bulbils affects the SGS in D. japonica, although its contribution to gene dispersal is small compared to the contribution of sexual reproduction.  相似文献   

13.
Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within < 50 cm of one another on the same rock surface. Unlike most previously studied clonal invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (Go) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective population sizes should promote inbreeding in clonal species, inbreeding does not appear to contribute significantly to the population structure of A. rudyi. Genet genotype frequencies conformed to Hardy-Weinberg expectations in all populations, and inbreeding coefficients (f) were close to zero. In general, the population structure of A. rudyi did not differ significantly from that observed among outcrossing sexual species with philopatric larval dispersal. Age estimates suggest, however, that genets of A. rudyi live for many decades. Genet longevity may promote high genotypic diversity within A. rudyi populations and may be the most important evolutionary consequence of clonal reproduction in this species and the many others that share its dispersal characteristics.  相似文献   

14.
1 We used isozyme variation to examine the genet structure of Uvularia perfoliata patches in gap and closed canopy habitats in a temperate deciduous forest in Maryland, USA.
2 A large patch in a gap habitat was composed of a small number of widely spread genets with many ramets, and a large number of genets with more restricted distribution and few ramets. Genets with many ramets were patchily distributed at a metre scale. Analysis of genet structure on a scale of square centimetres, however, revealed that the genets were highly intermingled with no clear boundaries between them. The presence at both scales of sampling of many genets with unique multilocus genotypes indicated continuing genet recruitment within the population.
3 In the closed canopy habitat, the patches examined were each composed of a single unique multilocus genotype, suggesting that each had developed by asexual propagation following the establishment of a single genet.
4 The clonal structure of U. perfoliata patches in both gap and closed canopy habitats therefore appears to depend on recruitment patterns of genets. Populations in closed canopy habitats are characterized by a 'waiting' strategy, in which asexual ramet production maintains populations until genet recruitment by seed production can occur under the more optimal conditions associated with canopy gaps. Extended sampling suggests that the genetic diversity of U. perfoliata populations is primarily controlled by the disturbance regime of the forest canopy.  相似文献   

15.
The spatial distribution patterns of genets and ramets within populations are expected to change as a function of the frequency with which clonal species recruit different types of offspring (sexual and clonal). We used an integrated approach to study the spatial arrangement of clonal plants by combining molecular and ecological data using Opuntia microdasys as a study system. The species is able to produce two types of clonal (plantlets and cladodes) and one type of sexual (seeds) offspring. Additionally it is found in three habitats that cause differences in the ability of each type of offspring to establish. In 2007, all individuals in the three habitats (162 in BH = bajada, 264 in IDH = hill-piedmont, and 136 at HPH = interdunes) were tagged and mapped. Amplified inter-simple sequence repeats (ISSR’s) were used to determine the multilocus genotype and relatedness of each individual ramet using 120 polymorphic bands (104 in BH, 128 in HPH and 180 in IDH). The spatial distribution pattern of genets and ramets was analyzed with the Hopkins test and spatial autocorrelation analysis. For all habitats we found that O. microdasys displayed a spatial distribution characterized by clumps of aggregated ramets, but habitats differed in the number of genets present. As for other clonal species a strong positive spatial autocorrelation exists within 20 m, although all analyses suggest that adjacent ramets are genetically less related to each other or belong to different genets, that is, ramets of different genets are intermingled. The spatial arrangement of genets and ramets in O. microdasys between habitats closely matches the frequency of establishment of each type of offspring (e.g. the more clonal areas are clumped groups of related individuals). These results confirm that in two habitats (BH and IDH) clonal recruitment had been more common than in the other habitat (HPH).  相似文献   

16.
Beatty GE  Provan J 《Annals of botany》2011,107(4):663-670

Background and Aims

Peripheral populations of plant species are often characterized by low levels of genetic diversity as a result of genetic drift, restricted gene flow, inbreeding and asexual reproduction. These effects can be exacerbated where range-edge populations are fragmented. The main aim of the present study was to assess the levels of genetic diversity in remnant populations of Hypopitys monotropa (syn. Monotropa hypopitys; yellow bird''s nest) at the edge of the species'' European range in Northern Ireland, since these remnant populations are small and highly fragmented.

Methods

Every plant found through surveys of 21 extant populations was genotyped for eight microsatellite loci to estimate levels and patterns of genetic diversity and clonality.

Key Results

Levels of genetic diversity were relatively high in the populations studied, and the incidence of clonal reproduction was generally low, with a mean of only 14·45 % of clonal individuals. Clones were small and highly spatially structured. Levels of inbreeding, however, were high.

Conclusions

The observed low levels of clonality suggest that the majority of genets in the populations of H. monotropa studied are fertile and that reproduction is predominantly sexual. As the species is highly self-compatible, it is likely that the high levels of inbreeding observed in the populations in the present study are the result of self-pollination, particularly given the small numbers of individuals in most of the patches. Given this extent of inbreeding, further genetic monitoring would be advisable to ensure that genetic diversity is maintained.  相似文献   

17.

Background and Aims

In clonal plants producing vegetative offspring, performance at the genet level as well as at the ramet level should be investigated in order to understand the entire picture of the population dynamics and the life history characteristics. In this study, demography, including reproduction and survival, the growth patterns and the spatial distributions of ramets within genets of the clonal herb Convallaria keiskei were explored.

Methods

Vegetative growth, flowering and survival of shoots whose genets were identified using microsatellite markers were monitored in four study plots for 3 years (2003–2005). The size structures of ramets in genets and their temporal shifts were then analysed. Their spatial distributions were also examined.

Key Results

During the census, 274 and 149 ramets were mapped in two 1 × 2 m plots, and 83 and 94 ramets in two 2 × 2 m quadrats. Thirty-eight genotypes were identified from 580 samples. Each plot included 5–18 genets, and most ramets belonged to the predominant genet(s) in each plot. Shoots foliated yearly for several years, but flowering ramets did not have an inflorescence the next year. A considerable number of new clonal offspring persistently appeared, forming a bell-shaped curve of the size structure of ramets in each genet. Comparing the structures modelled by the normal distributions suggested variation among ramets belonging to a single genet and variation among genets. Furthermore, spatial analyses revealed clumped and distant distributions of ramet pairs in a genet, in which the distant patterns corresponded to the linearly elongating clonal growth pattern of this species.

Conclusion

Characteristics of ramet performances such as flowering and recruitment of clonal offspring, in addition to growth, played a large part in the regulation of genet dynamics and distribution, which were different among the studied genets. These might be characteristics particularly relevant to clonal life histories.Key words: Clonal plant, Convallaria keiskei, demography, genet, genetic identification, growth pattern, life history, ramet, spatial distribution  相似文献   

18.
Leiothrix curvifolia var. lanuginosa and Leiothrix crassifolia are endemic and sympatric species in the Brazilian rupestrian grasslands, a habitat that has a predominance of sandy and shallow soils with low water retention. Based on the premise that soil moisture is one of the abiotic factors that affects most reproduction in plants, we hypothesized that the flowering phenology events and establishment of sexual and vegetative offspring would occur in the periods of higher soil water availability. We marked 478 ramets distributed among 100 genets of L. curvifolia var. lanuginosa and 693 ramets distributed among 100 genets of L. crassifolia, so that they could be observed monthly along the two rainy seasons from December 2003 to 2004. Both species showed phenological synchrony in the flower heads and seedlings production with soil moisture availability. Seedling mortality was intense in the dry period. Unlike the seedlings, the ramets survived was 100%. The greater capacity of ramets to survive can result from a much greater biomass compared with seedlings, and ramets become adult much faster. We conclude that for a successful seedling establishment, the synchronization with the rainy season was required, and moreover, that repeated seedling recruitment can be important for the maintenance of local populations of these species which suffer from high seedling mortality in the drought period. It is likely that the coincidence of the rainy period with seedling establishment is an important factor that determines the flowering phenological pattern of L. curvifolia var. lanuginosa and L. crassifolia in rupestrian grasslands.  相似文献   

19.
He  Wei-Ming  Zhang  Hong  Dong  Ming 《Plant Ecology》2004,172(1):1-10
Seedling and root sprout recruitment after a volcanic deforestation was examined in a Prunus ssiori population. According to genotypes of five microsatellite (SSR) loci, 44 genets were identified among 188 ramets ≥ 5 cm DBH in a 2.3-ha plot in 2000. The genets formed mutually exclusive patches. Because only one repeat change in an SSR locus distinguished five genets from adjacent genets, there is a possibility that the five genets derived from somatic mutations as well as sexual reproduction. Thus, at least 39 genets originated from seedlings, and at least 144 ramets derived from root sprouts. The seedlings were recruited after the volcanic eruptions in 1739 and before 1972 because trees of 5 cm DBH were 28 years of age, estimated from annual rings. As the largest ramet recruited from a root sprout was estimated to be 94 years old, root sprout recruitment began between 1739 and 1906. Thus, the estimated minimum rates of recruitment from seedlings and root sprouts were 0.167 y–1 and 0.618-2.182 y–1, respectively. The clonal diversity of the P. ssiori population (Simpson's D = 0.92) was higher than that of other clonal plant populations. The inbreeding coefficient was significantly negative (Wright's F IS = −0.069). These results suggest that the frequent seedling recruitment in an outbreeding system maintains the clonal diversity in the population. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Clonal growth is generally expected to have significant effects on the spatial genetic structure within populations. In this study, random amplified polymorphic DNA (RAPD) markers were used to reveal clonal and spatial genetic structure of four natural populations of Luohanguo (Siraitia grosvenorii), an economic vine species endemic to South China. A total of 351 ramets were assigned to 76 distinct multi-locus genotypes (i.e. genets), with the G/N varying from 0.121 to 0.350. No widespread genet was found across different populations. The clonal diversity (D) and evenness (E) ranged from 0.333 to 0.828 and from 0 to 0.741, respectively. While most genets consisted of fewer than five ramets, we observed some dominant genets that had much more (up to 69) ramets and spread over large areas. Spatial autocorrelation analyses revealed a spatial genetic structure (i.e. significant positive autocorrelation within 20 m and negative autocorrelation beyond 40 m) in one population, but not in other three populations with smaller population size. This study highlights the importance of clonal growth in shaping the spatial genetic structure in Luohanguo, which may have complex effects on the dynamics and evolution of its declining populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号