首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
This paper reviews recent advances in chemical synthesis, self‐assembly, and potential applications of monodisperse binary FePt nanoparticles. After a brief introduction to nanomagnetism and conventional processes of fabricating FePt nanoparticles, the paper focuses on recent developments in solution‐phase syntheses of monodisperse FePt nanoparticles and their self‐assembly into nanoparticle superlattices. The paper further outlines the surface, structural, and magnetic properties of the FePt nanoparticles and gives examples of three potential applications in data storage, permanent magnetic nanocomposites, and biomedicine.  相似文献   

4.
5.
6.
7.
8.
通过等离子体连续处理仪对疏水性材料表面进行表面改性而提高了其润湿性。研究了不同反应条件对高分子材料表面改性的影响;通过测定样品表面的接触角等性能评价了其表面亲水性的变化。经过等离子体表面处理,聚四氟乙烯的接触角有了显著下降;聚乙烯电池隔膜的吸碱率为自身重量的3.5倍,爬高率初始3 min接近100 mm;硅橡胶的接触角由105°下降到30°;聚酯的接触角由98°到15°。通过对材料表面进行丙烯酸接枝,评价了时效性的影响;初步探讨了真空紫外辐射对表面改性的影响。结果表明:改性后疏水性材料表面的润湿性得到了明显改善,该技术与设备在工业应用方面非常具有推广价值。  相似文献   

9.
10.
11.
Superhydrophobic metallic surfaces made via pulsed laser ablation have been utilized recently. Immediately after laser ablation, metallic surfaces become hydrophilic. By aging the laser‐ablated surface in ambient air for a relatively long period of time (several weeks to several months) or using a chemical coating post process, this type of surface becomes superhydrophobic. Herein, a facile post‐process heat treatment that does not use any harsh chemicals is introduced to reduce the wettability transition time from hydrophilicity to superhdyrophobicity compared to surfaces treated for extended periods of time in ambient air. Grid patterns are ablated on aluminum, copper, and titanium by a nanosecond pulsed laser. Then, facile post‐process heat treatment is applied at different temperatures. The effect of temperature on the wettability transition time is studied. The transition time is reduced from several weeks/months to a few hours. The wettability transition mechanism for each metal is also explained. Additionally, several potential applications, such as self‐cleaning, water positioning, and water transport, are proposed.
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
The modification of graphene‐based materials is an important topic in the field of materials research. This study aims to expand the range of properties for laser‐induced graphene (LIG), specifically to tune the hydrophobicity and hydrophilicity of the LIG surfaces. While LIG is normally prepared in the air, here, using selected gas atmospheres, a large change in the water contact angle on the as‐prepared LIG surfaces has been observed, from 0° (superhydrophilic) when using O2 or air, to >150° (superhydrophobic) when using Ar or H2. Characterization of the newly derived surfaces shows that the different wetting properties are due to the surface morphology and chemical composition of the LIG. Applications of the superhydrophobic LIG are shown in oil/water separation as well as anti‐icing surfaces, while the versatility of the controlled atmosphere chamber fabrication method is demonstrated through the improved microsupercapacitor performance generated from LIG films prepared in an O2 atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号