首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The charge separation efficiency of water oxidation photoanodes is modulated by depositing polyelectrolyte multilayers on their surface using layer‐by‐layer (LbL) assembly. The deposition of the polyelectrolyte multilayers of cationic poly(diallyldimethylammonium chloride) and anionic poly(styrene sulfonate) induces the formation of interfacial dipole layers on the surface of Fe2O3 and TiO2 photoanodes. The charge separation efficiency is modulated by tuning their magnitude and direction, which in turn can be achieved by controlling the number of bilayers and type of terminal polyelectrolytes, respectively. Specifically, the multilayers terminated with anionic poly(styrene sulfonate) exhibit a higher charge separation efficiency than those with cationic counterparts. Furthermore, the deposition of water oxidation molecular catalysts on top of interfacial dipole layers enables more efficient photoelectrochemical water oxidation. The approach exploiting the polyelectrolyte multilayers for improving the charge separation efficiency is effective regardless of pH and types of photoelectrodes. Considering the versatility of the LbL assembly, it is anticipated that this study will provide insights for the design and fabrication of efficient photoelectrodes.  相似文献   

2.
This work presents a new type of feed‐back active coating with inhibitor‐containing reservoirs for corrosion protection of metallic substrates. The reservoirs are composed of stratified layers of oppositely charged polyelectrolytes deposited on AA2024 aluminum alloy coated with hybrid sol‐gel film. The layer‐by‐layer assembled polyelectrolyte film with the entrapped corrosion inhibitor is constructed by sequential spray‐coating deposition of water solutions of poly(ethyleneimine), poly(sodium styrenesulfonate) and 8‐hydroxyquiniline on the top of the sol‐gel coating. The active corrosion protection of AA2024 alloy coated with SiO2/ZrO2 sol‐gel film and modified by polyelectrolytes is demonstrated by electrochemical impedance spectroscopy and scanning vibrating electrode technique. The results obtained here show that polyelectrolyte films deposited atop of the hybrid sol‐gel coating on AA2024 alloy remarkably improve the long‐term protection performance providing additional “intelligent” anticorrosion effect that results from delivery of inhibiting species “on demand”. This becomes possible since the configuration of the polyelectrolyte molecules depends on the presence of H+ ions making the polyelectrolyte film sensitive to the pH of the surrounding solution. The source of local pH changes is the corrosion process starting in the micro‐ and nano‐defects leading to increased permeability of the polyelectrolyte reservoir and, consequently, to controllable release of entrapped inhibitor.  相似文献   

3.
Layers of the polyelectrolytes poly(allylamine hydrochloride) (PAH, polycationic) and poly(styrene sulfonate) (PSS, polyanionic) are consecutively adsorbed on flat silicon oxide surfaces, forming stable, ultrathin multilayer films. Subsequently, a final monolayer of the polycationic copolymer poly(L ‐lysine)‐graft‐poly(ethylene glycol) (PLL‐g‐PEG) is adsorbed onto the PSS‐terminated multilayer in order to impart protein resistance to the surface. The growth of each of the polyelectrolyte layers and the protein resistance of the resulting [PAH/PPS]n(PLL‐g‐PEG) multilayer (n = 1–4) are followed quantitatively ex situ using X‐ray photoelectron spectroscopy and in situ using real‐time optical‐waveguide lightmode spectroscopy. In a second approach, the same type of [PAH/PSS]n(PLL‐g‐PEG) multilayer coatings are successfully formed on the surface of colloidal particles in order to produce surface‐functionalized, hollow microcapsules after dissolution of the core materials (melamine formaldehyde (MF) and poly(lactic acid) (PLA; colloid diameters: 1.2–20 μm). Microelectrophoresis and confocal laser scanning microscopy are used to study multilayer formation on the colloids and protein resistance of the final capsule. The quality of the PLL‐g‐PEG layer on the microcapsules depends on both the type of core material and the dissolution protocols used. The greatest protein resistance is achieved using PLA cores and coating the polyelectrolyte microcapsules with PLL‐g‐PEG after dissolution of the cores. Protein adsorption from full serum on [PAH/PPS]n(PLL‐g‐PEG) multilayers (on both flat substrates and microcapsules) decreases by three orders of magnitude in comparison to the standard [PAH/PPS]n layer. Finally, biofunctional capsules of the type [PAH/PPS]n(PLL‐g‐PEG/PEG‐biotin) (top copolymer layer with a fraction of the PEG chains end‐functionalized with biotin) are produced which allow for specific recognition and immobilization of controlled amounts of streptavidin at the surface of the capsules. Biofunctional multilayer films and capsules are believed to have a potential for future applications as novel platforms for biotechnological applications such as biosensors and carriers for targeted drug delivery.  相似文献   

4.
The use of cryopreserved arteries for vascular tissue engineering provides a promising way for vessel replacement. Unfortunately cryopreservation induces structural changes that strongly modify the mechanical properties and alter the thrombogenicity of the vessel after implantation. We present here a new procedure to treat the inner coating of cryopreserved arteries with poly(sodium‐4‐styrene sulfonate)/poly(allylamine hydrochloride) polyelectrolyte multilayers. We show that this treatment improves the mechanical properties of the cryopreserved vessel. It also allows the adhesion and spreading of endothelial cells so that the internal structure of the vessel closely resembles that of fresh arteries. Finally, we verify by PECAM‐1 and von‐Willebrand‐factor (vWF) expression that this treatment preserves the phenotype of the endothelial cells. This study should open new routes towards the development of future, new biocompatible tissue substitutes allowing long‐term functionality after implantation.  相似文献   

5.
A novel approach for encapsulation of hydrophobic materials into hydrophilic multifunctional shells is based on combining ultrasonic techniques and layer‐by‐layer protocols. Polyglutamate/polyelectrolyte nanocontainers of 600 nm size loaded with hydrophobic tetraphenylporphin are fabricated in work reported by Dmitri Shchukin and co‐workers on p. 1273. The hydrophobic core of the nanocontainers can encapsulate a huge variety of water‐insoluble drugs and the outer hydrophilic polyelectrolyte shell has controlled permeability and multifunctionality. A novel approach for encapsulation of hydrophobic materials into a hydrophilic multifunctional shell is presented, based on combining an ultrasonic technique and a layer‐by‐layer protocol. Polyglutamate/polyethyleneimine (PEI)/polyacrylic acid (PAA) and polyglutamate/PEI/PAA/silver nanocontainers loaded with a hydrophobic dye, 5,10,15,20‐tetraphenylporphin, dissolved in toluene, are fabricated. Uniform, stable, and monodisperse polyglutamate/PEI/PAA nanocontainers of about 600 nm are obtained. The hydrophobic core of the nanocontainers might contain a huge variety of water‐insoluble drugs and the outer polyelectrolyte shell may provide controlled permeability and desired multifunctionality. Confocal fluorescence microscopy and scanning electron microscopy are employed for the characterization of the resulting nanocontainers. Using sodium dodecyl sulfate as surfactant, the amount of nanocontainers, their monodispersity, and stability can be increased dramatically.  相似文献   

6.
The formation of weak polyelectrolyte films on planar and spherical supports has recently evoked major interest, as such coatings allow novel material properties to be tunable by pH and salt adjustment of the polyelectrolyte deposition conditions. We report on the build up of multilayers of the weak polyelectrolytes poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) on submicrometer‐sized polystyrene (PS) and silica colloid spheres (~ 500 nm) with the aid of copper ion templating. The copper ions complex to the carboxylate groups of PAA, facilitating the formation of PAA/PAH multilayers on the particles. Regular growth of the layers on the colloid spheres with each polyelectrolyte deposition step was confirmed by microelectrophoresis, single‐particle light scattering (SPLS), and transmission electron microscopy (TEM), with an average bilayer thickness of ~ 3 nm. The polyelectrolyte multilayer‐coated particles formed stable colloidal dispersions, with ζ‐potentials ranging from 30 mV (PAH outer layer) and –50 mV (PAA outer layer). Complementary quartz‐crystal microbalance and UV‐vis spectrophotometry studies on PAA/PAH multilayers formed on planar supports were performed to examine the film formation and the role of copper ion binding to the layers. PAA/PAH multilayers formed on colloid particles were also chemically crosslinked by using the activator 1‐ethyl‐3‐(3‐dimethylaminopropyl) carbodiimide (EDC). The degree of film crosslinking could be readily controlled by varying the concentration of EDC employed. Following solvent decomposition of the template particles coated with crosslinked PAA/PAH multilayers, intact hollow polymer capsules were obtained. These capsules were found to be impenetrable to polystyrene.  相似文献   

7.
A novel approach to perform a high number of individual polymerase chain reactions (PCR) in microcapsule reaction compartments, termed “Microcapsule‐PCR” was developed. Temperature stable microcapsules with a selective permeable capsule wall were constructed by matrix‐assisted layer‐by‐layer (LbL) Encapsulation technique. During the PCR, small molecular weight building blocks – nucleotides (dNTPs) were supplied externally and diffuse through the permeable capsule wall into the interior, while the resulted high molecular weight PCR products were accumulated within the microcapsule. Microcapsules (∼110.8 µm average diameter) filled with a PCR reaction mixture were constructed by an emulsion technique having a 2% agarose core and a capsule formed by LbL coating with poly(allylamine‐hydrochloride) and poly(4‐styrene‐sulfonate). An encapsulation efficiency of 47% (measured for primer‐FITC (22 bases)) and 98% PCR efficiency was achieved. Microcapsules formed by eight layers of polyelectrolyte and subjected to PCR cycling (up to 95 °C) demonstrated good temperature stability without any significantly changes in DNA retention yield and microcapsule morphology. A multiplex Microcapsule‐PCR experiment demonstrated that microcapsules are individual compartment and do not exchange templates or primers between microcapsules during PCR cycling.  相似文献   

8.
A novel approach for encapsulation of hydrophobic materials into a hydrophilic multifunctional shell is presented, based on combining an ultrasonic technique and a layer‐by‐layer protocol. Polyglutamate/polyethyleneimine (PEI)/polyacrylic acid (PAA) and polyglutamate/PEI/PAA/silver nanocontainers loaded with a hydrophobic dye, 5,10,15,20‐tetraphenylporphin, dissolved in toluene, are fabricated. Uniform, stable, and monodisperse polyglutamate/PEI/PAA nanocontainers of about 600 nm are obtained. The hydrophobic core of the nanocontainers might contain a huge variety of water‐insoluble drugs and the outer polyelectrolyte shell may provide controlled permeability and desired multifunctionality. Confocal fluorescence microscopy and scanning electron microscopy are employed for the characterization of the resulting nanocontainers. Using sodium dodecyl sulfate as surfactant, the amount of nanocontainers, their monodispersity, and stability can be increased dramatically.  相似文献   

9.
Freestanding layer‐by‐layer (LbL) films encapsulating controlled volume fractions (? = 2.5–22.5 %) of silver nanowires are fabricated. The silver nanowires are sandwiched between poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS) films resulting in nanocomposite structures with a general formula of (PAH/PSS)10PAH Ag(PAH/PSS)10PAH. The Young's modulus, toughness, ultimate stress, and ultimate strain are evaluated for supported and freestanding structures. Since the diameter of the nanowires (73 nm) is larger than the thickness of the LbL films (total of about 50 nm), a peculiar morphology is observed with the silver nanowires protruding from the planar LbL films. Nanowire‐containing LbL films possess the ability to sustain significant elastic deformations with the ultimate strain reaching 1.8 %. The Young's modulus increases with increasing nanowire content, reaching about 6 GPa for the highest volume fraction, due to the filler reinforcement effect commonly observed in composite materials. The ultimate strengths of these composites range from 60–80 MPa and their toughness reaches 1000 kJ m–3 at intermediate nanowire content, which is comparable to LbL films reinforced with carbon nanotubes. These robust freestanding 2D arrays of silver nanowires with peculiar optical, mechanical, and conducting properties combined with excellent micromechanical stability could serve as active elements in microscopic acoustic, pressure, and photothermal sensors.  相似文献   

10.
The development of nanostructured microcapsules based on a biomimetic lipid bilayer membrane (BLM) coating of poly(sodium styrenesulfonate) (PSS)/poly(allylamine hydrochloride) (PAH) polyelectrolyte hollow microcapsules is reported. A novel engineered ion channel, gramicidin (bis‐gA), incorporated into the lipid membrane coating provides a functional capability to control transport across the microcapsule wall. The microcapsules provide transport and permeation for drug‐analog neutral species, as well as positively and negatively charged ionic species. This controlled transport can be tuned for selective release biomimetically by controlling the gating of incorporated bis‐gA ion channels. This system provides a platform for the creation of “smart” biomimetic delivery vessels for the effective and selective therapeutic delivery and targeting of drugs.  相似文献   

11.
Novel biochemically active compact polyelectrolyte complexes (CoPECs) are obtained through a simple coprecipitation and compaction procedure. As shown for the system composed of poly(acrylic acid) (PAA) and poly(allylamine) (PAH) as polyelectrolytes and alkaline phosphatase (ALP) as enzyme, the enzyme can be firmly immobilized into these materials. The ALP not only remains active in these materials, but the matrix also enhances the specific activity of the enzyme while protecting it from deactivation at higher temperature. The presence of the matrix allows fine control and substantial enhancement of reaction rates by varying the salt concentration of the contacting solution or temperature. The excellent reusability, together with the ease of co‐immobilizing other useful components, such as magnetic particles, allowing facile handling of the CoPECs, makes these materials interesting candidates for variable scaffolds for the immobilization of enzymes for small‐ and large‐scale enzyme‐catalyzed processes.  相似文献   

12.
A facile method of connecting fluorescent meso‐tetrakis(4‐sulfonatophenyl)porphine tetranion nanotubes to polyelectrolyte capsules is developed. Heat‐sensitive robust polyelectrolyte capsules consisting of poly(diallyldimethylammonium chloride) and poly(styrene sulfonate) multilayers have been fabricated using the conventional layer‐by‐layer technique. Supramolecular aggregation of porphyrin monomers to nanotubes is induced in the microenvironment of the capsules by sequential addition of salt and acid. Scanning electron microscopy, transmission electron microscopy, and atomic force microscopy images reveal satellite‐like structures consisting of a central capsule core with porphyrin nanotubes emerging radially from the capsule walls. The growth and the distribution of the porphyrin units have been monitored by UV‐vis spectroscopy, fluorescence spectroscopy, and confocal laser scanning microscopy. Changing the temperature alters the dimensions and the arrangement of the nanotubes on the capsule walls. Such an attachment of porphyrin tubes onto robust functional capsules should help in developing an artificial light‐harvesting system.  相似文献   

13.
Eight new iridium(III) complexes 1‐8 , with 1,3,4‐oxadiazole (OXD) derivatives as the cyclometalated C^N ligand and/or the ancillary N^N ligands are synthesized and their electrochemical, photophysical, and solid‐state light‐emitting electrochemical cell (LEC) properties are investigated. Complexes 1 , 2 , 7 and 8 are additionally characterized by single crystal X‐ray diffraction. LECs based on complexes 1‐8 are fabricated with a structure indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/cationic iridium complex:ionic liquid/Al. LECs of complexes 1 – 6 with OXD derivatives as the cyclometalated ligands and as the ancillary ligand show yellow luminescence (λmax = 552–564 nm). LECs of complexes 7 and 8 with cyclometalated C^N phenylpyridine ligands and an ancillary N^N OXD ligand show red emission (λmax 616–624 nm). Using complex 7 external quantum efficiency (EQE) values of >10% are obtained for devices (210 nm emission layer) at 3.5 V. For thinner devices (70 nm) high brightness is achieved: red emission for 7 (8528 cd m?2 at 10 V) and yellow emission for 1 (3125 cd m?2 at 14 V).  相似文献   

14.
Superhydrophobic coatings that are also self‐healing have drawn much attention in recent years for improved durability in practical applications. Typically, the release of the self‐healing agents is triggered by temperature and moisture change. In this study, UV‐responsive microcapsules are successfully synthesized by Pickering emulsion polymerization using titania (TiO2) and silica (SiO2) nanoparticles as the Pickering agents to fabricate all‐water‐based self‐repairing, superhydrophobic coatings. These coatings are environmentally friendly and can be readily coated on various substrates. Compared to conventional superhydrophobic coatings, these coatings can regenerate superhydrophobicity and self‐cleaning ability under UV light, mimicking the outdoor environment, after they are mechanically damaged or contaminated with organics. They can maintain the superhydrophobicity after multiple cycles of accelerated weathering tests.  相似文献   

15.
Mosaic, single‐crystal CaCO3 thin films have been prepared on modified poly(ethylene terephthalate) (PET) templates. Surface modification of PET through the introduction of carboxylic acid groups (COOH‐PET), and the subsequent physical and chemical adsorption of poly(allylamine hydrochloride) (PAH) at pH 8 (PAH8‐PET) and pH 11 (PAH11‐PET), afford template surfaces that influenced the phase transition of an amorphous CaCO3 (ACC) films during crystallization in air. Macroscopic ACC thin films are prepared on modified PET films in the presence of poly(acrylic acid). Polycrystalline, spherulitic vaterite (CaCO3) films are observed to form on native PET and PAH11‐PET, while mosaic, single‐crystal calcitic (CaCO3) films form on COOH‐PET and PAH8‐PET templates. These results confirm that single‐crystal CaCO3 growth patterns are dependent on the surface characteristics of the PET template. We infer therefore, that the nucleation and growth of ceramic films on polymeric templates can be controlled by chemical modification of the polymeric template surface, and by the subsequent attachment of ionic polyelectrolytes.  相似文献   

16.
Stimulation of transprosthetic vascularization represents an interesting strategy in implantology to allow rapid tissue integration and finally to avoid prosthetic rejection. To achieve this goal, we modified the surface of porous titanium implants with polyelectrolyte multilayer (PEM) films functionalized with vascular endothelial growth factor (VEGF). Among the two PEM systems investigated, poly(L‐lysine)/poly(L‐glutamic acid) (PLL/PGA) and poly(allylamine hydrochloride)/poly(sodium 4‐styrenesulfonate) (PAH/PSS), the (PAH/PSS)4 architecture was selected to functionalize porous titanium, both for its high efficiency to adsorb VEGF and for its biocompatibility toward endothelial cells. In an original way, we unambiguously demonstrated that VEGF adsorbed on (PAH/PSS)4 maintains its bioactivity in vitro and stimulates endothelial cells proliferation. This effect was correlated with specific activation of intracellular signaling pathways induced by successive phosphorylation of the endothelial VEGF receptor VEGFR2 and mitogen‐activated protein kinases (MAPK) ERK1/2. By clearly demonstrating the proangiogenic activity of the VEGF‐PEM coating in vitro, the present study constitutes a first step toward in vivo application.  相似文献   

17.
The influence of the hole transport layer on device stability in polymer:fullerene bulk‐heterojunction solar cells is reported. Three different hole transport layers varying in composition, dispersion solvent, electrical conductivity, and work function were used in these studies. Two water‐based hole transport layers, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) and polyaniline:poly(styrene sulfonate), and one isopropyl alcohol‐based polyaniline:poly(styrene sulfonate) transport layer were investigated. Solar cells with the different hole transport layers were fabricated and degraded under illumination. Current–voltage, capacitance–voltage, and capacitance–frequency data were collected at light intensities of 16, 30, 48, 80, and 100 mW cm?2 over a period of 7 h. Device performance and stability were compared between nonencapsulated and encapsulated samples to gain understanding about degradation effects related to oxygen and water as well as degradation mechanisms related to the intrinsic instability of the solar cell materials and interfaces. It is demonstrated that the properties of the hole transport layer can have a significant impact on the stability of organic solar cells.  相似文献   

18.
The unique properties of magnetic nanocrystals have triggered intensive research towards their effective functionalization and application in many technological fields. Although synthesis of magnetic colloids is being thoroughly studied, there is limited knowledge on the synthesis, characterization, and properties of magnetic polyelectrolyte spherical brushes. In the present work, the preparation of such hybrids and the subsequent formation of stable aqueous colloids are described. The core of the spherical brush consists of a magnetic γ‐Fe2O3 nanocrystallite (faceted but mostly spherical‐like) with a mean diameter of 17 nm. The bioadhesive polyelectrolyte poly(sodium 4‐styrene sulfonate), forming the surrounding brush layer, was proven to be an effective covalently modifying macromolecule for the iron oxide surface, as Fourier transform IR spectroscopy revealed. Several observations on colloidal aspects are discussed and are successfully explained by models and experiments describing polyelectrolyte brushes with a soft polymeric core. Finally, the hybrids exhibit their multifunctional character and their technological importance by combining in a single and soluble product with magnetic and nonlinear optical properties.  相似文献   

19.
A new approach to forming a gradient hole‐injection layer in polymer light‐emitting diodes (PLEDs) is demonstrated. Single spin‐coating of hole‐injecting conducting polymer compositions with a perfluorinated ionomer results in a work function gradient through the layer formed by self‐organization, which leads to remarkably efficient single‐layer PLEDs (ca. 21 cd A–1). The device lifetime is significantly improved (ca. 50 times) compared with the conventional hole‐injection layer, poly(3,4‐ethylenedioxythiophene)/poly(styrene sulfonate). These results are a good example for demonstrating that the shorter lifetime of PLEDs compared with small‐molecule‐based organic LEDs (SM‐OLEDs) is not mainly due to the inherent degradation of the polymeric emitter itself. Hence, the results open the way to further improvements of PLEDs for real applications to large‐area, high‐resolution, and full‐color flexible displays.  相似文献   

20.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号