首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polystyrene (PS) blends with rigid ladderlike polyphenylsilsesquioxane (PPSQ) were prepared by solution casting followed by hot pressing. The rheological properties of these blends were studied under dynamic shear and uniaxial elongation conditions. The loss modulus (G″) and dynamic shear viscosity (η*) of the 95/5 PP/PPSQ blend were slightly lower than those of pure PS at low frequencies (≤10?2 rad/s). However, the storage modulus (G′), G″, and η* of the other blends (90/10, 85/15, and 80/20) were higher than those of pure PS and increased with PPSQ content. The ηE data demonstrated that PS/PPSQ blends exhibited slightly weaker (5% PPSQ) or much weaker (10% PPSQ) strain hardening than PS. In contrast, the 85/15 and 80/20 PP/PPSQ blends showed strain softening, and the extent of strain softening increased with PPSQ content. PS entanglements might have been reduced by the specific interactions between PS and PPSQ, which locally ordered some PS molecules in the 95/5 blend sample, because most of the PPSQ might have been well dispersed in the PS continuous phase, and only a few small PPSQ particles (~1.3 μm) were formed because of good miscibility. However, at high PPSQ contents (≥10%), many larger hard PPSQ particles were formed, which acted as fillers during the rheological measurements. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 706–713, 2005  相似文献   

2.
The condensation reaction of styrene‐maleic anhydride copolymer (SMAH) with polytetramethylene ether glycol (PTMEG) in the presence or absence of a hydrated zinc acetate catalyst was studied in a batch mixer. As a control, pure SMAH and an SMAH/catalyst blend were also subjected to the same processing conditions. The reaction characteristics of the blends were investigated by Fourier transform infrared spectroscopy (FTIR) and thermal and rheological analysis. FTIR analysis of the SMAH/PTMEG blend indicated ester formation. The addition of zinc acetate and/or PTMEG to SMAH decreased the glass transition temperature of pure SMAH. Oscillatory shear properties of storage modulus, G′, loss modulus, G″, and complex viscosity, η*, were measured. The SMAH/PTMEG/zinc acetate blend had higher G′, G″, and η* than the blend without the zinc acetate catalyst. The parameters of the relaxation spectra were calculated by using the experimental oscillatory data and the generalized Maxwell model. Zero shear viscosity and the mean relaxation time increased with addition of zinc acetate and/or PTMEG to SMAH as a result of chain extension/branching reactions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2615–2623, 2002  相似文献   

3.
The effect of miscibility on elongational viscosity of polymer blends was investigated in homogeneous, miscible, and immiscible states by the blend of 1.5 wt % of ultrahigh‐molecular‐weight (UHMW) polymer. The matrix polymer was either poly(methyl methacrylate) (PMMA), or poly(acrylonitrile‐co‐styrene) (AS) that has a comparable elongational viscosity value. The homogeneous blend consisted of 98.5 wt % of PMMA and 1.5 wt % of UHMW–PMMA. The miscible blend was composed of AS and UHMW–PMMA at the same ratio. The immiscible blend was a combination of AS and UHMW–polystyrene (PS) at the same ratio. The strain‐hardening behavior of the different blends were compared with that of pure PMMA. It was demonstrated that 1.5 wt % of UHMW induces a strong strain‐hardening property in the homogeneous and miscible blends but was hardly changed in the immiscible blend. The optical microscope observation of the immiscible blend suggested that the UHMW domains were stretched, but that the degree of domain deformation was less than a given elongational strain. It was concluded that the strain‐hardening property is strongly affected by the miscibility of UHMW chain and matrix. The strong strain‐hardening property is caused by the deformation of the UHMW polymer. UHMW chains are stretched when they are entangled with surrounding polymers. However, UHMW chains in an immiscible state are not so deformed because of viscosity difference and no entanglements between domain and matrix. A smaller degree of UHMW chain deformation in immiscible state results in weaker strain‐hardening property. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 961–969, 1999  相似文献   

4.
Poly(vinyl chloride)/chlorinated polyethylene (PVC/CPE)/methylacryloylpropyl‐containing polyhedral oligomeric silsesquioxane (MAP–POSS) nanocomposites are prepared. The plastic behavior and dynamic rheological behavior of PVC/CPE/MAP–POSS are investigated. The influences of composition on dynamic storage modulus G′, loss modulus G″, and complex viscosity η* of PVC/CPE/MAP–POSS melts are discussed. The dynamic mechanical properties, mechanical properties, and morphology are determined. The results show that both plastic time and balance torque of the nanocomposites decrease, but the G′, G″, and η* all increase with increasing MAP–POSS content. The maximum value of the dynamic mechanical loss tan δ decreases and elasticity increases when MAP–POSS is added. The impact strength of the nanocomposites increases with increasing MAP–POSS content and has the best value at 10% content of MAP–POSS, which is 5.38 kJ/m2 higher than that of the blend without MAP–POSS. The MAP–POSS can be used as an efficient process aid and impact aid for the PVC/CPE blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
In this work, the morphology and linear viscoelastic behavior of PMMA/PP blends to which a graft copolymer PP‐g‐PMMA has been added was studied. The copolymer concentration varied from 1 to 10 wt % relative to the dispersed phase concentration. The rheological data were used to infer the interfacial tension between the blended components. It was observed that PP‐g‐PMMA was effective as a compatibilizer for PMMA/PP blends. For PP‐g‐PMMA concentration added below the critical concentration of interface saturation, two rheological behaviors were observed depending on the blend concentration: for 70/30 blend, the storage modulus, at low frequencies, increased as compared to the one of the unmodified blend; for 90/10 blend, it decreased. For 90/10 blend, the relaxation spectrum presented an interfacial relaxation time related to the presence of the compatibilizer (τβ). For PP‐g‐PMMA concentrations added above the critical concentration of interface saturation, the storage modulus of all blends increased as compared with the one of the unmodified blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Blends of polypropylene copolymer (PP‐cp) and a polyolefinic elastomer (POE) were prepared by a melt‐blending process at 210°C and 60 rpm using a counterrotating twin‐screw extruder. The POE content was varied up to 25%. The shear viscosity over a wide range of shear rate was measured. All blend compositions showed well‐defined zero shear viscosity and shear thinning behavior. The melt viscosity values were between those of the principal components in all cases. Rheology of blends shows different behavior up to concentrations of POE corresponding to the tough–brittle transition. The linear viscoelastic properties (G′, G″, η*, η′, η″) were used to check the miscibility of the two components in the melt state. All blend compositions showed a good degree of miscibility over the range of POE concentrations studied. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 665–671, 2002; DOI 10.1002/app.10376  相似文献   

7.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

8.
Steady and oscillatory shearing flow properties of compatible and incompatible polymer blend systems were measured, using a cone-and-plate rheometer. The compatible blend systems investigated are blends of two low-density polyethylenes (LDPE) having different values of molecular weight and blends of poly(methyl methacrylate) (PMMA) with poly(vinylidene fluoride) (PVDF). The incompatible blend system investigated is a blend of poly(methyl methacrylate) (PMMA) with polystyrene (PS). It was found that (1) plots of first normal stress difference (τ11 – τ22) vs. shear stress (τ12) and plots of storage modulus (G′) vs. loss modulus (G″) for the LDPE blends become independent of temperature and blend composition; (2) plots of τ11 – τ22 vs. τ12, and G′ vs. G″ for the PMMA/PVDF blends become independent of temperature but dependent upon blend composition. It was found further that, for the incompatible PMMA/PS blends, the dependence of τ11 – τ22 on blend composition, when plotted against τ12, is different from the dependence of G′ on blend composition, when plotted against G″. However, in both compatible and incompatible blend systems, plots of τ11 – τ22 vs. τ12 and plots of G′ versus G″ are independent of temperature. The seemingly complicated composition-dependent rheological behavior of the incompatible blend system is explained with the aid of photomicrographs describing the state of dispersion.  相似文献   

9.
The effects of compatibilizer on the morphological, thermal, mechanical, and rheological properties of poly(methyl methacrylate) (PMMA)/poly(N‐methyl methacrylimide) (PMMI) (70/30) blends were investigated. The compatibilizer used in this study was styrene–acrylonitrile–glycidyl methacrylate (SAN‐GMA) copolymer. Morphological characterization of the PMMA/PMMI (70/30) blend with SAN‐GMA showed a decrease in PMMI droplet size with an increase in SAN‐GMA. The glass‐transition temperature of the PMMA‐rich phase became higher when SAN‐GMA was added up to 5 parts per hundred resin by weight (phr). The flexural and tensile strengths of the PMMA/PMMI (70/30) blend increased with the addition of SAN‐GMA up to 5 phr. The complex viscosity of the PMMA/PMMI (70/30) blends increased when SAN‐GMA was added up to 5 phr, which implies an increase in compatibility between the PMMA and PMMI components. From the weighted relaxation spectrum, which was obtained from the storage modulus and loss modulus, the interfacial tension of the PMMA/PMMI (70/30) blend was calculated using the Palierne emulsion model and the Choi‐Schowalter model. The results of the morphological, thermal, mechanical, and rheological studies and the values of the interfacial tension of the PMMA/PMMI (70/30) blends suggest that the optimum compatibilizer concentration of SAN‐GMA is 5 phr. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43856.  相似文献   

10.
A comparative study was conducted of composites made with sludge from three different paper mills. Sludges were obtained from a thermomechanical pulp (TMP), a chemico‐TMP (CTMP), and a Kraft mill with a feedstock of primarily black spruce. The primary sludge (PS) and secondary sludge (SS) were mixed at two different ratios (PS:SS = 7:3 and 9:1) and blended with high‐density polyethylene (HDPE) at 20%, 30%, and 40% proportion. The blends were tested using plate–plate geometry before subjection to frequency sweep by oscillation rheometry. The storage modulus (G′), loss modulus (G″), and complex viscosity (η*) increased with increasing paper sludge content. Decreasing the PS:SS ratio from 9:1 to 7:3 decreased G′, G″, and η*. Differential scanning calorimetry showed that sludge addition increased both the melting and crystallization temperature, for a positive effect on crystallinity. Although the behavior of sludge–high‐density polyethylene blends differed from that of traditional wood plastic composite made with wood flour, they obtained G′, G″, and η* values of the same magnitude. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46484.  相似文献   

11.
The viscoelastic behavior of brominated isobutylene‐co‐p‐methylstyrene (BIMS) rubber/hydrocarbon resin blends and BIMS/phenol formaldehyde resin blends was studied with the use of a rubber process analyzer. Dynamic mechanical analysis and scanning electron microscopy were used to evaluate the compatibility between the BIMS/tackifier blends. Strain sweep tests at temperature below the softening point of the tackifiers showed the formation of resin–resin networks in the incompatible BIMS/phenolic resin blends. However, resin–resin network was not prominent in the case of the compatible BIMS/hydrocarbon resin blends. Frequency sweep tests were performed at the strain amplitude within the linear region at several temperatures and the variations of shear storage modulus, G′ and complex viscosity, η* against frequency were recorded. The tackifying resins modified the viscoelastic properties of the BIMS rubber by reducing the storage modulus at lower frequency and by increasing the storage modulus at higher frequencies. However, this action was found to be highly dependent on (a) rubber‐tackifier compatibility, (b) blend proportions, and (c) test temperature. Furthermore, stress relaxation measurements of the BIMS/tackifier blends at temperature below the softening point of the tackifiers showed longer period of relaxation for the incompatible BIMS/phenolic resin blends. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

12.
The dynamic rheological behaviors at 210, 230, and 250 °C are measured by small amplitude oscillatory shear on a rotational rheometer for a polypropylene(PP)/ ethylene‐propylene‐diene monomer(EPDM) block copolymer/ high density polyethylene (HDPE)/blend. The scanning electron microscope (SEM) photomicrographs show the blend has a droplet/matrix, semi‐co‐continuous, co‐continuous morphology respectively at different weight ratios. The Cole–Cole (G″ vs. G′) data of the blends can be fitted by the simplified Palierne's model only for very narrow weight ratios. A physical scheme is proposed that the dispersed droplets are enclosed by EPDM, thus an equivalent dispersed phase is made up of “expanded” EPDM. With this physical scheme the G″ vs. G′ data of the HDPE‐rich blends at 210 °C can be fitted well by Palierne's model. Also with the physical scheme the G″ vs. G′ data of the PP‐rich blends at three temperatures can be fitted well by G–M's model with G* of interface equals to zero. This means the proposed physical scheme is reasonable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43709.  相似文献   

13.
The rheological behavior of blends of poly(methyl methacrylate) (PMMA) and poly(acrylonitrile-stat-styrene)-graft-polybutadiene (ABS) was investigated using a cone-and-plate rheometer. The rheological properties measured were shear stress (σ12), viscosity (η), and first normal stress difference (N1) as functions of shear rate (\documentclass{article}\pagestyle{empty}\begin{document}$ \dot \gamma$ \end{document}) in steady shearing flow, and storage modulus (G′) and loss modulus (G″) as functions of frequency (ω) in oscillatory shearing flow. It has been found that the rheological behavior of blends of ABS and PMMA was very similar to that of blends of poly(styrene-stat-acrylonitrile) (SAN) and PMMA, in that N1 in logarithmic plots of N1 versus σ12, and G′ in logarithmic plots of G′ versus G″, vary regularly with blend composition. This has led us to conclude that the rubber particles that are grafted on an SAN resinous matrix in ABS resin plays only a minor role in influencing the compatibility of ABS/PMMA blends, and that the SAN chains attached to the surface of rubber particles, and the SAN matrix phase, play a major role in compatibilizing ABS resin with PMMA.  相似文献   

14.
In this study, the melt linear viscoelastic rheological properties of polyamide 6 (PA6)–acrylonitrile butadiene styrene terpolymer (ABS) immiscible blends were analyzed with the help of Coran and fractional Zener models (FZMs) to assess the microstructure of the blends. For this purpose, dynamic shear flow experiments and scanning electron microscopy investigations were performed. The nonzero value of the elastic modulus of the spring element (Ge) of the FZM for ABS‐rich blends was explained by the formation of a networklike structure because of the agglomeration of the rubber phases of the ABS matrix, whereas for the PA6‐rich blends with a high content of ABS, the interactions and/or interconnectivity of the ABS dispersed phase led to a nonzero value of Ge. The value of the fitting parameter of the Coran model (f) was near to 0.5 for the 50/50 blend; this was fully in agreement with the formed cocontinuous morphology for this blend composition. On the other hand, the f value for the blends with a matrix–droplet‐type morphology was near to zero for the PA6‐rich blends; this indicated the lower continuity of the ABS dispersed phase as a harder phase compared to the PA6 soft matrix, whereas the f value was near to 1 for ABS‐rich blends. This confirmed the formation of an interconnected networklike structure for this series of blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45423.  相似文献   

15.
Linear and nonlinear viscoelasticity of an adhesion material for integrated circuit chips were investigated to control the processability. The material consists of acrylic polymer (AP) and epoxy oligomer (EP). EP content in AP/EP blend is 70 vol %. From the linear viscoelasticity, it was found that the iso‐free volume state of AP/EP blend was 20°C lower than that of AP and the entanglement molecular weight Me of AP/EP was three times higher than that of AP. Nonlinear stress relaxation modulus G(t,γ) showed that the time‐strain separability, G(t,γ) = G(t)h(γ), was applicable at long time above a characteristic time τk, where G(t) is linear relaxation modulus and h(γ) is the damping function. The τk value was estimated to be 10 s for AP/EP and below 0.1 s for AP at an iso‐free volume state. (h(γ) for AP and AP/EP behaved like a usual linear homopolymer.) The time evolution of the elongational viscosity ηE(t) of each sample showed that AP/EP system exhibited strong strain hardening at , although AP did not show strain hardening at strain rate measured, when the data were compared at an iso‐free volume state. These results strongly suggest that the strain hardening behavior of AP/EP is attributable to enhancement of the stretch of AP polymer chains by diluting EP oligomer chains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
The morphological and rheological behaviors of toughened epoxy resins modified with core‐shell rubber particles (CSR) were studied. These rubber particles were based on a poly (butadiene‐co‐styrene) core and a crosslinked poly (methyl methacrylate) shell. The effect of functionalized groups was performed on two types of CSR particles: first, those containing carboxyl‐functionalized groups (CSf), and second, particles containing no carboxyl‐functionalized groups (CSnf) in the PMMA‐shell. For these blends, the correlations between the morphology, particle dispersion state and their rheological behaviors before curing were investigated. Preliminary work using TEM micrographs indicated that the blends modified with CSf and CSnf exhibited the same particle size but differed with respect to the dispersion state. Rheological behavior of these blends was assessed in steady shear flow and dynamic viscoelastic experiments. Yield viscosity near‐zero shear rate occurred in the DGEBA/CSf blend presenting non‐Newtonian behavior at the particle volume fraction of 20% vol. The rheological behavior was clearly related to the state of particle dispersion and analyzed taking into account interactions between the particles‐particles and the particles‐matrix. The Williams‐Landel‐Ferry (WLF) shift procedure was used to construct modulus master curves G′ and G″ from the elastic solid state to molten polymers. A secondary plateau existed at low frequencies and was related to the presence of interactions leading to a physical network‐type structure. The deviation between theoretical G′ (Paleirne's model) and experimental G′ values was evaluated and exhibited high elasticity at the terminal zone, which correlated well with available literature.  相似文献   

17.
The rheological behaviors of noncompatibilized and compatibilized polypropylene/polyethylene terephthalate blends (80/20) in relation with their morphology were studied at two constant levels using maleic anhydride‐modified styrene‐ethylene‐butylene‐styrene polymer. By scanning electron microscopy of cryofractured surfaces, the morphology of the blends was examined after etching. The frequency sweep and step strain experiments were carried out for the blends. The frequency sweep results indicated that increasing the compatibilizer causes behavioral changes of the rheological properties, which could be related to the aggregation of the dispersed particles with rubbery shell. Also, the frequency sweep and step strain experiments in linear region, after cessation of simple steady shear flow with various preshear rates (higher shear stress values than Gp), were done on compatibilized blend. The results showed that the morphology characteristics, defined by the aggregation of the dispersed particles based on rheological experimental data, were destroyed and replaced by an alignment in the flow direction for present imposed shear rates. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
Rheological characterization of a model suspension containing hydroxyl-terminated polybutadiene and glass beads with filler concentration up to 30% by volume was performed by using a Haake parallel disk rheometer. The rheological tests conducted were the measurement of the storage modulus, G′, loss modulus, G′, and complex viscosity, η*, as functions of the frequency and the steady shear viscosity as a function of the shear rate. The linear viscoelastic region was determined to extend up to 50% strain by measuring G′, G′, and η* as functions of strain amplitude. By using multiple gap separations between the disks, it was found that the suspension did not exhibit slip at the walls of the rheometer. G′ and G′ were used to determine the relaxation times distribution, Gii, ⊘) as functions of the relaxation time, λi, and the filler content, ⊘. The relaxation moduli, Gii, ⊘), decreased with the relaxation time, but increased with the filler content. The Cox–Merz rule was also observed to be valid for these suspensions. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 70: 507–514, 1998  相似文献   

19.
Ternary blends composed of matrix polymer poly(vinylidene fluoride) (PVDF) with different proportions of poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) blends were prepared by melt mixing. The miscibility, crystallization behavior, mechanical properties and hydrophilicity of the ternary blends have been investigated. The high compatibility of PVDF/PMMA/PVP ternary blends is induced by strong interactions between the carbonyl groups of the PMMA/PVP blend and the CF2 or CH2 group of PVDF. According to the Fourier transform infrared and wide‐angle X‐ray difffraction analyses, the introduction of PMMA does not change the crystalline state (i.e. α phase) of PVDF. By contrast, the addition of PVP in the blends favors the transformation of the crystalline state of PVDF from non‐polar α to polar β phase. Moreover, the crystallinity of the PVDF/PMMA/PVP ternary blends also decreases compared with neat PVDF. Through mechanical analysis, the elongation at break of the blends significantly increases to more than six times that of neat PVDF. This confirms that the addition of the PMMA/PVP blend enhances the toughness of PVDF. Besides, the hydrophilicity of PVDF is remarkably improved by blending with PMMA/PVP; in particular when the content of PVP reaches 30 wt%, the water contact angle displays its lowest value which decreased from 91.4° to 51.0°. Copyright © 2011 Society of Chemical Industry  相似文献   

20.
To extend the potential applications of polylactide (PLA) in film blowing, foaming, thermal molding, and so on, the high‐viscosity PLA composites with various compositions of carboxyl‐ended polyester (CP) and solid epoxy (SE) have been successfully prepared by an in situ reaction blending process. Their rheological properties, crystallization behaviors, tensile properties, and morphologies have been investigated in detail. The results show that the complex viscosity η*, G′, and G″ at low‐frequency region and the tensile strength of PLA composites are obviously improved with the addition of CP/SE, but the nonisothermal crystallization of PLA component is hindered. SEM reveals that some microphase separations existed in the as‐prepared composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号