首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the molecular alignment of conjugated polymers within thin‐film samples is essential for a complete picture of their optical and transport properties, and hence for the continued development of optoelectronic device applications. We report here on the efficacy of Raman anisotropy measurements as a probe of molecular orientation, presenting results for aligned polyfluorene nematic glass films. Comparison is made with the results of optical dichroism measurements performed on the same samples. We show that in many cases molecular orientation can be more directly characterized by Raman anisotropy, and that it can have a greater sensitivity to the degree of molecular orientation than conventional optical dichroism. The fact that the Raman measurements can be readily performed on the same thin films (~ 100 nm thickness) that are required for optical dichroism means that there is no ambiguity in a direct comparison of results. This situation differs from that for standard X‐ray diffraction measurements (these require film thicknesses of several μm) and electron diffraction or electron energy loss spectroscopy measurements (these require film thicknesses of 10 nm or less). The Raman data allow the angle (relative to the chain axis) for the optical dipole transition moment to be deduced from the dichroic ratio, and confirm the role that its off‐axis component plays in limiting this ratio. The added fact that Raman anisotropy data can be collected in situ, in reflection geometry for standard device structures, and with microscopic resolution and chemical specificity makes the technique even more attractive as a non‐invasive device probe.  相似文献   

2.
In this study, room‐temperature mechanical rubbing is used to control the 3D orientation of small π‐conjugated molecular systems in solution‐processed polycrystalline thin films without using any alignment substrate. High absorption dichroic ratio and significant anisotropy in charge carrier mobilities (up to 130) measured in transistor configuration are obtained in rubbed organic films based on the ambipolar quinoidal quaterthiophene (QQT(CN)4). Moreover, a solvent vapor annealing treatment of the rubbed film is found to improve the optical and charge transport anisotropy due to an increased crystallinity. X‐ray diffraction and atomic force microscopy measurements demonstrate that rubbing does not only lead to an excellent 1D orientation of the QQT(CN)4 molecules over large areas but also modifies the orientation of the crystals, moving molecules from an edge‐on to a face‐on configuration. The reasons why a mechanical alignment technique can be used at room temperature for such a polycrystalline film are rationalized, by the plastic characteristics of the QQT(CN)4 layer and the role of the flexible alkyl side chains in the molecular packing. This nearly complete conversion from edge‐on to face‐on orientation by mechanical treatment in polycrystalline small‐molecule‐based thin films opens perspectives in terms of fundamental research and practical applications in organic optoelectronics.  相似文献   

3.
We utilize scanning transmission X‐ray microscopy (STXM) to study the domain structure of polycrystalline films of the semiconducting polymer poly(9,9’‐dioctylfluorene‐co‐benzothiadiazole) (F8BT). By taking several images at different orientations of the film with respect to the polarization of the X‐ray beam, we are able to compute quantitative maps of molecular alignment/order and molecular orientation, including both the backbone direction and phenyl ring plane orientation, as well as the in‐plane and out‐of‐plane components. We show that polycrystalline F8BT films consist of well‐ordered micron‐sized domains with the transition from one domain orientation to another characterized either by a smooth transition of orientation or by ~ 200 nm wide disordered domain boundaries. The morphology of the disordered domain boundaries resemble the electroluminescence patterns observed previously in F8BT light‐emitting field‐effect transistors suggesting that charge trapping at these disordered domain boundaries facilitates charge recombination in ambipolar operation. A relatively narrow distribution of local average tilt angles is observed that correlates with film structure, with the ordered domains in general showing a higher tilt angle than the disordered domain boundaries. We also use secondary electron detection to image the surface domain structure of polycrystalline F8BT films and demonstrate that the polycrystalline structure extends to the film/air interface. Finally, we calculate ideal NEXAFS spectra corresponding to a perfect F8BT crystal oriented with the 1s – π* transition dipole moment parallel and perpendicular to the electric field vector of a perfectly linearly polarized X‐ray beam.  相似文献   

4.
This study is an extended investigation on the formation of the first few monolayers of conjugated poly(fluorene)‐based polymer films prepared from solution on defined polar and nonpolar surfaces. In particular, a symmetrical A–B–A triblock copolymer consisting of poly(2‐alkylaniline) as A blocks and poly(9,9‐dialkylfluorene) as B blocks and a poly(9,9‐dialkylfluorene) homopolymer is used for this study. The dependence on drying conditions by means of solvent selection, the influence of a subsequent heat treatment, and the influence of the substrate polarity are investigated for ultrathin films as well as the transition from the first monolayers to the bulk polymer. The study is performed with optical absorption and photoluminescence spectroscopy, and atomic force microscopy to obtain complementary information of optical properties and morphological details. We find that ultrathin films (ca. 1–2 nm) prepared on mica from various solvents form highly defined, flat monolayers at the interface without lateral regularities indicating a dipole–dipole interaction between conjugated‐polymer segments and mica surface dipoles. This is further confirmed by bathochromic photoluminescence shifts observed for the ultrathin layers compared to the bulk polymer. Complementary experiments on nonpolar surfaces, highly oriented pyrolytic graphite (HOPG), show a total absence of defined flat films supporting the assumption of a dipole–dipole assisted formation on mica. For increased film thickness on mica (5 nm and more) the homopolymer does not form any regular structures or ordered layers on top of the monolayer. In contrast, the triblock copolymer, shorter in length, revealed a tendency to form a less‐defined layer‐type growth (3–3.5 nm thick) above the monolayer that was of higher order for higher‐boiling‐point solvents, indicating that the polymers are found in a different conformation. Moreover, one finds that some solvents that show partial immiscibility with the polymer strongly alter the formation of the film. The observations made for the two different types of polymers allow for an assignment of film‐formation driving forces to individual polymer segments and allow for the formulation of a growth model that explains the observed results and indicates the importance of appropriate substrate selection for organic electronic/optoelectronic devices.  相似文献   

5.
The branching point of the side‐chain of naphthalenediimide (NDI)‐based conjugated polymers is systematically controlled by incorporating four different side‐chains, i.e., 2‐hexyloctyl (P(NDI1‐T)), 3‐hexylnonyl (P(NDI2‐T)), 4‐hexyldecyl (P(NDI3‐T)), and 5‐hexylundecyl (P(NDI4‐T)). When the branching point is located farther away from the conjugated backbones, steric hindrance around the backbone is relaxed and the intermolecular interactions between the polymer chains become stronger, which promotes the formation of crystalline structures in thin film state. In particular, thermally annealed films of P(NDI3‐T) and P(NDI4‐T), which have branching points far away from the backbone, possess more‐developed bimodal structure along both the face‐on and edge‐on orientations. Consequently, the field‐effect electron mobilities of P(NDIm‐T) polymers are monotonically increased from 0.03 cm2 V−1 s−1 in P(NDI1‐T) to 0.22 cm2 V−1 s−1 in P(NDI4‐T), accompanied by reduced activation energy and contact resistance of the thin films. In addition, when the series of P(NDIm‐T) polymers is applied in all‐polymer solar cells (all‐PSCs) as electron acceptor, remarkably high‐power conversion efficiency of 7.1% is achieved along with enhanced current density in P(NDI3‐T)‐based all‐PSCs, which is mainly attributed to red‐shifted light absorption and enhanced electron‐transporting ability.  相似文献   

6.
The anisotropy in the optical absorption and photoconductivity of thin layers of mesomorphic derivatives of hexa‐peri‐hexabenzocoronene (HBC) have been investigated for aligned films prepared via three different methods: deposition on friction‐deposited polytetrafluoroethylene (PTFE), zone‐casting (ZC), and Langmuir–Blodgett (LB) multilayer dipping. The ratio of the optical density for light polarized perpendicular to the alignment direction, OD+, to that for light polarized parallel, OD=, varies from close to 1.0 up to 12.5 depending on whether the HBC cores are tilted at close to 45° or 90° with respect to the axis of the self‐assembled columnar stacks. For all aligned films the photoconductivity, determined using the electrode‐less flash‐photolysis time‐resolved microwave conductivity technique (FP‐TRMC), was found to be favored in the direction of columnar alignment by up to a factor of 30 for a PTFE‐aligned film. The effect of varying the temperature of the films over a range encompassing the temperature at which the transition from the crystalline solid to the columnar mesophase occurs in the bulk materials has been investigated. High‐temperature annealing increases the optical and conductivity anisotropy for the LB film significantly, but has little effect for the PTFE and the ZC films. The relative efficacy of the different alignment procedures is discussed.  相似文献   

7.
Temperature‐dependent (80–350 K) charge transport in polymer semiconductor thin films is studied in parallel with in situ X‐ray structural characterization at equivalent temperatures. The study is conducted on a pair of isoindigo‐based polymers containing the same π‐conjugated backbone with different side chains: one with siloxane‐terminated side chains (PII2T‐Si) and the other with branched alkyl‐terminated side chains (PII2T‐Ref). The different chemical moiety in the side chain results in a completely different film morphology. PII2T‐Si films show domains of both edge‐on and face‐on orientations (bimodal orientation) while PII2T‐Ref films show domains of edge‐on orientation (unimodal orientation). Electrical transport properties of this pair of polymers are also distinctive, especially at high temperatures (>230 K). Smaller activation energy (E A) and larger pre‐exponential factor (μ 0) in the mobility‐temperature Arrhenius relation are obtained for PII2T‐Si films when compared to those for PII2T‐Ref films. The results indicate that the more effective transport pathway is formed for PII2T‐Si films than for the other, despite the bimodally oriented film structure. The closer π–π packing distance, the longer coherence length of the molecular ordering, and the smaller disorder of the transport energy states for PII2T‐Si films altogether support the conduction to occur more effectively through a system with both edge‐on and face on orientations of the conjugated molecules. Reminding the 3D nature of conduction in polymer semiconductor, our results suggest that the engineering rules for advanced polymer semiconductors should not simply focus on obtaining films with conjugated backbone in edge‐on orientation only. Instead, the engineering should also encounter the contribution of the inevitable off‐directional transport process to attain effective transport from polymer thin films.  相似文献   

8.
Three new photoreactive brush polyimides (PSPIs), each bearing a different type of chromophore (cinnamoyl (CA), 3‐(2‐furyl)acryloyl (FA), and methacryloyl (MA)) in their bristles (i.e., side groups), are successfully synthesized, and are found to produce good‐quality films with smooth surfaces through conventional spin‐casting and drying processes. These PSPI polymers are thermally stable up to 320 °C. This is the first quantitative investigation of the photoaligning and rubbing‐aligning processabilities of PSPI polymer films, and of the abilities of the resultant films to control the orientation and anchoring of liquid‐crystal (LC) molecules. The chromophores of both poly(1‐cinnamoyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐CA) and poly(1‐3‐(2‐furyl)acryloyloxy‐2,4‐phenylene hexafluoroisopropylidenediphthalimide) (6F‐DAP‐FA) PSPIs are found to undergo photodimerization in thin films and, to a lesser extent, photoisomerization, resulting in insoluble, crosslinked films. The MA chromophores of 6F‐DAP‐MA PSPI are found to undergo photopolymerization in thin films, which might include photodimerization to a lesser extent, resulting in insoluble, crosslinked films. Thin films of the PSPI polymer chains are found to have excellent unidirectional orientation ability as a result of either photoexposure with linearly polarized UV light (LPUVL) or rubbing. Both the photoaligned and the rubbing‐aligned polymer chains in the PSPI films are demonstrated to effectively induce the alignment of nematic LCs along their orientation directors by anisotropic interactions between the preferentially oriented polymer chain segments and the LCs. The contribution to LC alignment of the microgrooves developed in the rubbed films is found to be very low. The anchoring energies of the LCs on the photoaligned film surfaces are comparable to those on the rubbing‐aligned film surfaces; the anchoring energies are found to be in the range 0.45–2.25 × 10–5 J m–2, and to depend on which film treatment process is used and which chromophore bristle is present. In summary, the new PSPIs reported in this paper are promising LC alignment‐layer candidates with rubbing‐free processing for the production of advanced LC‐display (LCD) devices, including LCD televisions with large display areas.  相似文献   

9.
The ordering and conformational properties of dicarbonitrile‐para‐oligophenyls are studied with complementary methods, namely X‐ray structure analysis, low‐temperature scanning tunneling microscopy, and near‐edge X‐ray absorption fine‐structure spectroscopy. The packing of the functionalized variants differs from their technologically interesting para‐oligophenyl counterparts, both in the bulk crystal phase and in thin films grown by organic molecular beam epitaxy (OMBE) under ultra‐high vacuum conditions on the Ag(111) surface. In the crystal phase, the conformation depends on the number n of phenyl rings, exhibiting an intriguing screw‐like structure in the case of n = 4 at room temperature as well as at 180 K. For OMBE‐grown thin films, the whole series acquires the same type of conformation, characterized by alternately twisted phenyl rings, similar to the pure oligophenyl species. However, for all tested molecules, the orientation of the molecular reference plane is uniform within the entire film and coincides with the surface plane. This contrasts with the herringbone ordering adopted by the phenyl backbones without the carbonitrile groups. Our results demonstrate how the functionalization of moieties with extended conjugated electron systems can help to improve the structural homogeneity in technologically relevant organic thin films.  相似文献   

10.
Two libraries of random conjugated polymers are presented that incorporate varying ratios of regioisomeric azulene units connected via the 5‐membered or 7‐membered ring in combination with bithiophene or fluorene comonomers. It is demonstrated that the optoelectronic and stimuli‐responsive properties of the materials can be systematically modulated by tuning the relative percentage of each azulene building block in the polymer backbone. Significantly, these materials exhibit stimuli‐responsive behavior in the solid state with spin‐coated thin films undergoing rapid and reversible color switching. Ultimately, this work introduces a new design strategy in which the optoelectronic properties of conjugated polymers can be modulated by varying only the regiochemistry of the constituent building blocks along a polymer chain.  相似文献   

11.
This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm?2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm?1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm?2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.  相似文献   

12.
The utilization of inorganic semiconductors for surface‐enhanced Raman spectroscopy (SERS) has attracted enormous interest. However, despite the technological relevance of organic semiconductors for enabling inexpensive, large‐area, and flexible devices via solution processing techniques, these π‐conjugated systems have never been investigated for SERS applications. Here for the first time, a simple and versatile approach is demonstrated for the fabrication of novel SERS platforms based on micro‐/nanostructured 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) thin films via an oblique‐angle vapor deposition. The morphology of C8‐BTBT thin films is manipulated by varying the deposition angle, thus achieving highly favorable 3D vertically aligned ribbon‐like micro‐/nanostructures for a 90° deposition angle. By combining C8‐BTBT semiconductor films with a nanoscopic thin Au layer, remarkable SERS responses are achieved in terms of enhancement (≈108), stability (>90 d), and reproducibility (RSD < 0.14), indicating the great promise of Au/C8‐BTBT films as SERS platforms. Our results demonstrate the first example of an organic semiconductor‐based SERS platform with excellent detection characteristics, indicating that π‐conjugated organic semiconductors have a great potential for SERS applications.  相似文献   

13.
A series of liquid‐crystalline (LC) π‐ ‐conjugated oligothiophenes bearing three or two alkoxy chains at their extremities has been designed and synthesized. These polycatenar oligothiophenes form various LC nanostructures including smectic, columnar, and micellar cubic phases. These properties depend on the number and length of the terminal alkoxy chains. The hole mobilities for the oligothiophenes have been measured. The layered smectic and columnar structures are capable of transporting holes, leading to mobilities of up to 0.01 cm2 V?1 s?1. The columnar LC assemblies have also been explored to produce linearly polarized light‐emission. Fine red polarized fluorescence is observed from a uniaxially aligned film of the oligothiophenes. The redox properties of the oligothiophenes both in solutions and in films have been examined. The oligothiophenes exhibit electrochromism upon applying an oxidative potential. The present design strategy is useful for fabricating a variety of functional electro‐active molecular assemblies.  相似文献   

14.
The performance of all‐polymer solar cells (all‐PSCs) is often limited by the poor exciton dissociation process. Here, the design of a series of polymer donors ( P1 – P3 ) with different numbers of fluorine atoms on their backbone is presented and the influence of fluorination on charge generation in all‐PSCs is investigated. Sequential fluorination of the polymer backbones increases the dipole moment difference between the ground and excited states (Δµge) from P1 (18.40 D) to P2 (25.11 D) and to P3 (28.47 D). The large Δµge of P3 leads to efficient exciton dissociation with greatly suppressed charge recombination in P3 ‐based all‐PSCs. Additionally, the fluorination lowers the highest occupied molecular orbital energy level of P3 and P2 , leading to higher open‐circuit voltage (VOC). The power conversion efficiency of the P3 ‐based all‐PSCs (6.42%) outperforms those of the P2 and P1 (5.00% and 2.65%)‐based devices. The reduced charge recombination and the enhanced polymer exciton lifetime in P3 ‐based all‐PSCs are confirmed by the measurements of light‐intensity dependent short‐circuit current density (JSC) and VOC, and time‐resolved photoluminescence. The results provide reciprocal understanding of the charge generation process associated with Δµge in all‐PSCs and suggest an effective strategy for designing π‐conjugated polymers for high performance all‐PSCs.  相似文献   

15.
Novel multifunctional conjugated polymers, [poly(p‐phenylene)s and poly(bithienylene‐phenylene)s with (R)‐ and (S)‐configurations], which have fluorescence, chirality, and photoresponsive properties, have been designed and synthesized. The polymers are composed of π‐conjugated main chains, where poly(p‐phenylene) and poly(bithienylene‐phenylene) are fluorescence moieties, and the side chains of the photochromic dithienylethene moiety are linked with chiral alkyl groups. The polymer films exhibit right‐ or left‐handed circularly polarized fluorescence (CPF) and also show reversible quenching and emitting behaviors as a result of photochemical isomerization of the dithienylethene moiety upon irradiation with ultraviolet and visible light. This is the first report realizing the reversible switching of CPF using chirality and photoresponsive properties.  相似文献   

16.
We report confocal micro‐Raman spectra of the organic semiconductor α‐sexithiophene (T6) on bulk crystals and on thin films grown on technologically relevant substrates and devices. We show that the two polymorphs, which are clearly identified by their lattice phonon spectra, may coexist as physical impurities of one inside the other in the same crystallite. Spatial distribution of the two phases is monitored by Raman phonon mapping of crystals grown upon different conditions. Raman microscopy has then been extended to T6 thin films grown on silicon oxide wafers. We identify the crystal phase in thin films whose thickness is just 18 nm. The most intense total‐symmetric Raman vibration is still detectable for a two‐monolayer thick film. Comparative analysis between micro‐Raman and AFM of T6 thin films grown on field effect transistors shows that electrode‐channel steps favour the nucleation and growth of T6 molecules on the substrate, at least below 50 nm.  相似文献   

17.
Gold nanorods with well‐defined aspect ratios are homogeneously incorporated within poly(vinyl alcohol) thin films and subsequently aligned by heating and stretching the nanocomposite films. The spatial alignment of the nanorods is directly proved using transmission electron microscopy. The polarization‐dependent optical response of the rods is measured and compared with a dipole model. Excellent agreement is found. Additionally, irradiation of the film with nanosecond laser pulses (1064 nm) leads to selective reshaping of the nanorods into nanospheres, and we demonstrate that this effect can be used to micropattern optical structures into the films.  相似文献   

18.
The one‐step preparation of highly anisotropic polymer semiconductor thin films directly from solution is demonstrated. The conjugated polymer poly(3‐hexylthiophene) (P3HT) as well as P3HT:fullerene bulk–heterojunction blends can be spin‐coated from a mixture of the crystallizable solvent 1,3,5‐trichlorobenzene (TCB) and a second carrier solvent such as chlorobenzene. Solidification is initiated by growth of macroscopic TCB spherulites followed by epitaxial crystallization of P3HT on TCB crystals. Subsequent sublimation of TCB leaves behind a replica of the original TCB spherulites. Thus, highly ordered thin films are obtained, which feature square‐centimeter‐sized domains that are composed of one spherulite‐like structure each. A combination of optical microscopy and polarized photoluminescence spectroscopy reveals radial alignment of the polymer backbone in case of P3HT, whereas P3HT:fullerene blends display a tangential orientation with respect to the center of spherulite‐like structures. Moreover, grazing‐incidence wide‐angle X‐ray scattering reveals an increased relative degree of crystallinity and predominantly flat‐on conformation of P3HT crystallites in the blend. The use of other processing methods such as dip‐coating is also feasible and offers uniaxial orientation of the macromolecule. Finally, the applicability of this method to a variety of other semi‐crystalline conjugated polymer systems is established. Those include other poly(3‐alkylthiophene)s, two polyfluorenes, the low band‐gap polymer PCPDTBT, a diketopyrrolopyrrole (DPP) small molecule as well as a number of polymer:fullerene and polymer:polymer blends.  相似文献   

19.
Well‐defined small molecule (SM) donors can be used as alternatives to π‐conjugated polymers in bulk‐heterojunction (BHJ) solar cells with fullerene acceptors (e.g., PC61/71BM). Taking advantage of their synthetic tunability, combinations of various donor and acceptor motifs can lead to a wide range of optical, electronic, and self‐assembling properties that, in turn, may impact material performance in BHJ solar cells. In this report, it is shown that changing the sequence of donor and acceptor units along the π‐extended backbone of benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SM donors critically impacts (i) molecular packing, (ii) propensity to order and preferential aggregate orientations in thin‐films, and (iii) charge transport in BHJ solar cells. In these systems ( SM1‐3 ), it is found that 6,7‐difluoroquinoxaline ([2F]Q) motifs directly appended to the central benzo[1,2‐b:4,5‐b′]dithiophene (BDT) unit yield a lower‐bandgap analogue ( SM1 ) with favorable molecular packing and aggregation patterns in thin films, and optimized BHJ solar cell efficiencies of ≈6.6%. 1H‐1H DQ‐SQ NMR analyses indicate that SM1 and its counterpart with [2F]Q motifs substituted as end‐group SM3 possess distinct self‐assembly patterns, correlating with the significant charge transport and BHJ device efficiency differences observed for the two analogous SM donors (avg. 6.3% vs 2.0%, respectively).  相似文献   

20.
Under first‐principles computations, a simple strategy is identified to modulate the electronic and magnetic properties of zigzag graphene nanoribbons (zGNRs). This strategy takes advantage of the effect of the floating dipole field attached to zGNRs via ππ interactions. This dipole field is induced by the acceptor/donor functional groups, which decorate the ladder‐structure polydiacetylene derivatives with an excellent delocalized π‐conjugated backbone. By tuning the acceptor/donor groups, –C≡C– number, and zGNR width, greatly enriched electronic and magnetic properties, e.g., spin gapless semiconducting, half‐metallic, and metallic behaviors, with the antiferromagnetic?ferromagnetic conversion can be achieved in zGNRs with perfect, 57‐reconstructed, and partially hydrogenated edge patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号