首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the challenges in semiconductor manufacturing processes is the state estimation of a high‐mix production system. The traditional algorithm consists of constructing a context matrix based on the product fabricating thread. The state of the context matrix is estimated using the Moore‐Penrose pseudo‐inverse method. Although the method works well, the context matrix is often singular. Taking an integrated moving average disturbance into consideration, a novel state estimation method is proposed in a high‐mix manufacturing scenario. Furthermore, the recursive Bayesian estimation is presented to obtain the estimations of states combined with a moving window and an analysis of variance model. As a result, the calculation of the inverse of the context matrix is avoided and the unobservability problem is addressed. Both simulated and industrial cases are presented to demonstrate the effectiveness of the proposed algorithm.  相似文献   

2.
We consider a remote state estimation problem in the presence of an eavesdropper over packet dropping links. A smart sensor transmits its local estimates to a legitimate remote estimator, in the course of which an eavesdropper can randomly overhear the transmission. This problem has been well studied for unstable dynamical systems, but seldom for stable systems. In this article, we target at stable and marginally stable systems and aim to design an event‐triggered scheduling strategy by minimizing the expected error covariance at the remote estimator and keeping that at the eavesdropper above a user‐specified lower bound. To this end, we model the evolution of the error covariance as an infinite recurrent Markov chain and develop a recurrence relation to describe the stationary distribution of the state at the eavesdropper. Monotonicity and convergence properties of the expected error covariance are further investigated and employed to solve the optimization problem. Numerical examples are provided to validate the theoretical results.  相似文献   

3.
In this article, a novel off‐policy cooperative game Q‐learning algorithm is proposed for achieving optimal tracking control of linear discrete‐time multiplayer systems suffering from exogenous dynamic disturbance. The key strategy, for the first time, is to integrate reinforcement learning, cooperative games with output regulation under the discrete‐time sampling framework for achieving data‐driven optimal tracking control and disturbance rejection. Without the information of state and input matrices of multiplayer systems, as well as the dynamics of exogenous disturbance and command generator, the coordination equilibrium solution and the steady‐state control laws are learned using data by a novel off‐policy Q‐learning approach, such that multiplayer systems have the capability of tolerating disturbance and follow the reference signal via the optimal approach. Moreover, the rigorous theoretical proofs of unbiasedness of coordination equilibrium solution and convergence of the proposed algorithm are presented. Simulation results are given to show the efficacy of the developed approach.  相似文献   

4.
In this paper, the distributed state estimation problem is investigated for a class of sensor networks described by uncertain discrete‐time dynamical systems with Markovian jumping parameters and distributed time‐delays. The sensor network consists of sensor nodes characterized by a directed graph with a nonnegative adjacency matrix that specifies the interconnection topology (or the distribution in the space) of the network. Both the parameters of the target plant and the sensor measurements are subject to the switches from one mode to another at different times according to a Markov chain. The parameter uncertainties are norm‐bounded that enter into both the plant system as well as the network outputs. Furthermore, the distributed time‐delays are considered, which are also dependent on the Markovian jumping mode. Through the measurements from a small fraction of the sensors, this paper aims to design state estimators that allow the nodes of the sensor network to track the states of the plant in a distributed way. It is verified that such state estimators do exist if a set of matrix inequalities is solvable. A numerical example is provided to demonstrate the effectiveness of the designed distributed state estimators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
We consider reduced‐order and subspace state estimators for linear discrete‐time systems with possibly time‐varying dynamics. The reduced‐order and subspace estimators are obtained using a finite‐horizon minimization approach, and thus do not require the solution of algebraic Lyapunov or Riccati equations. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

6.
Robust state estimation problem for wireless sensor networks composed of multiple remote sensor nodes and a fusion node is investigated subject to a limitation on the communication rate. An analytical robust fusion estimator based on a data‐driven transmission strategy is derived to save the sensor energy consumption and reduce the network traffic congestion. The conditions guaranteeing the uniform boundedness of estimation errors of the robust fusion estimator are investigated. Numerical simulations are provided to show the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
This paper deals with the state estimation problem of a class of nonlinear time‐varying systems with switched dynamics. Based on the concept of fixed‐time stability, an observer is designed to reconstruct the continuous state of switched nonlinear time‐varying systems with state jumps, satisfying the minimal dwell‐time condition. Using the past input and output values of the studied system, some sufficient conditions are provided to estimate the state before the next switching. Some numerical results illustrate the effectiveness of the proposed scheme.  相似文献   

8.
Robust state estimation problem subject to a communication constraint is investigated in this paper for a class of wireless sensor networks constituted by multiple remote sensor nodes and a fusion node. An analytical robust fusion estimator using local event‐triggered transmission strategies is derived aiming to reduce energy consumption of the sensor nodes and refrain from network traffic congestion. Some conditions are presented guaranteeing the uniformly bounded estimation errors of the robust state estimator. Several numerical simulations are presented to show the validity of the proposed method.  相似文献   

9.
This article emphasizes the finite‐time state estimation problem for delayed complex dynamical networks with random parameters. In order to reduce the amount of transmission process, an aperiodic sampled‐data event‐triggered mechanism is introduced to determine whether the measurement output should be released at certain time points which incorporate an appropriate triggering condition and sampling moments. Furthermore, a concept of finite‐time boundedness in the pth moment is proposed to access the performance of state estimator. The objective of this article is to design an event‐triggered state estimator to estimate the states of nodes such that, in the presence of time delays, uncertainties, and randomly changing coupling weights, the estimation error system is finite‐time bounded in the pth moment related to a given constant. Some sufficient conditions in form of linear matrix inequalities and algebraic inequalities are established to guarantee finite‐time boundedness. Finally, a numerical example is presented to show the effectiveness of the theoretical results.  相似文献   

10.
The state estimation problem is discussed for discrete Markovian jump neural networks with time‐varying delays in terms of linear matrix inequality (LMI) approach. The considered transition probabilities are assumed to be time‐variant and partially unknown. The aim of the state estimation problem is to design a state estimator to estimate the neuron states and ensure the stochastic stability of the error‐state system. A delay‐dependent sufficient condition for the existence of the desired state estimator is proposed. An explicit expression of the desired estimator is also given. A numerical example is introduced to show the effectiveness of the given result. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
This article aims to design an optimal interval observer for discrete linear time‐invariant systems. Particularly, the proposed design method first transforms the interval observer into a zonotopic set‐valued observer by establishing an explicit mathematical relationship between the interval observer and the zonoptopic set‐valued observer. Then, based on the established mathematical relationship, a locally optimal observer gain is designed for the interval observer via the equivalent zonotopic set‐valued observer structure and the Frobenious norm‐based size of zonotopes. Third, considering that the dynamics of the optimal interval observer becomes a discrete linear time‐varying system due to the designed time‐varying optimal gain, an optimization problem to obtain a coordinate transformation matrix and the locally optimal observer gain for the interval observer is formulated and handled. Finally, a theoretic comparison on the conservatism of the interval observer and the zonotopic set‐valued observer is made. At the end of this article, a microbial growth bioprocess is used to illustrate the effectiveness of the proposed method.  相似文献   

12.
This paper proposes to design an unknown input observer (UIO) for the linear‐parameter‐varying (LPV) system on the basis of the set theory, which is named as the set‐theoretic UIO (SUIO). The advantage of the SUIO consists in that it combines active and passive approaches to obtain robustness in state estimation (SE) and fault detection (FD). The active approach is based on the use of UIO to decouple unknown inputs, while the passive approach is based on the set theory to bound uncertain factors that cannot be actively decoupled. As a result, the effect of both unknown inputs (process disturbances, modeling errors, etc.) and measurement noises can be appropriately handled in the residual signals compared with the standard UIO‐based SE and FD approaches. The design of SUIO can overcome the limitations of the traditional UIO design conditions, which can significantly broaden the application of the UIO‐based SE and FD theory. Moreover, this paper proposes a generalized framework that can provide more flexibility in the design of SUIO guaranteeing their stability by means of a group of matrix inequalities. Because the LPV system uses a collection of online obtainable scheduling variables to embed nonlinearities, the design of SUIO for the LPV system can be used to address the SE and FD problems of nonlinear systems. At the end of this paper, two case studies are used to illustrate the effectiveness of the proposed approach. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
This paper is concerned with the variance‐constrained state estimation problem for a class of networked multi‐rate systems (NMSs) with network‐induced probabilistic sensor failures and measurement quantization. The stochastic characteristics of the sensor failures are governed by mutually independent random variables over the interval [0,1]. By applying the lifting technique, an augmented system model is established to facilitate the state estimation of the underlying NMSs. With the aid of the stochastic analysis approach, sufficient conditions are derived under which the exponential mean‐square stability of the augmented system is guaranteed, the prescribed H performance constraint is achieved, and the individual variance constraint on the steady‐state estimation error is satisfied. Based on the derived conditions, the addressed variance‐constrained state estimation problem of NMSs is recast as a convex optimization one that can be solved via the semi‐definite program method. Furthermore, the explicit expression of the desired estimator gains is obtained by means of the feasibility of certain matrix inequalities. Two additional optimization problems are considered with respect to the H performance index and the weighted error variances. Finally, a simulation example is utilized to illustrate the effectiveness of the proposed state estimation method. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the attack‐resilient state estimation problem for linear systems with adversarial attacks and unknown inputs, where the upper bound of the unknown inputs is unknown. It is assumed that the attacker has limited resources and can only manipulate a certain number of sensors. In most of the existing observer design approaches for the systems with unknown inputs even in the absence of attacks, the observer matching condition should be satisfied. To overcome this restriction, a novel switched observer is proposed, where the matched unknown inputs will be completely compensated by means of the outputs and the mismatched part will be suppressed in terms of L2‐gain rejection property. Meanwhile, the observer can provide an attack‐resilient state estimation. Compared with the existing results, the proposed observer can guarantee that the resulting observer error system is stable with unknown input attenuation level γ that can be optimized. Finally, a simulation example of an unmanned ground vehicle is provided to show the effectiveness of the proposed approach.  相似文献   

15.
This paper presents an integrated robust fault estimation and fault‐tolerant control technique for stochastic systems subjected to Brownian parameter perturbations. The augmented system approach, unknown input observer method, and optimization technique are integrated to achieve robust simultaneous estimates of the system states and the means of faults concerned. Meanwhile, a robust fault‐tolerant control strategy is developed by using actuator and sensor signal compensation techniques. Stochastic linear time‐invariant systems, stochastic systems with Lipschitz nonlinear constraint, and stochastic systems with quadratic inner‐bounded nonlinear constraint are respectively investigated, and the corresponding fault‐tolerant control algorithms are addressed. Finally, the effectiveness of the proposed fault‐tolerant control techniques is demonstrated via the drivetrain system of a 4.8 MW benchmark wind turbine, a 3‐tank system, and a numerical nonlinear model.  相似文献   

16.
In this paper, the resilient control problem is investigated for a wireless networked control system (WNCS) under denial‐of‐service (DoS) attack via a hierarchical game approach. In the presence of a wireless network, a DoS attacker leads to extra packet dropout in the cyber layer of WNCS by launching interference power. A zero‐sum Markov game is exploited to model the interaction between the transmitter and the DoS attacker under dynamic network environment. Additionally, with the attack‐induced packet loss, an H minimax controller is designed in the physical layer by using a delta operator approach. Both value iteration and Q‐learning methods are used to solve the hierarchical game problem for the WNCS. The proposed method is applied to a load frequency control system to illustrate the effectiveness.  相似文献   

17.
18.
For the elderly and chronic patients with cardiovascular disease who live alone, it is necessary to constantly monitor their physiological parameters, especially the electrocardiogram (ECG), to effectively prevent and control their health condition and even to provide urgent treatment or care while an emergency such as the abnormal variation of heart rate (HR) occurs. In this paper, a wireless in-home physiological monitoring system, based on multi-hop relay communications, which can ubiquitously and continuously monitor the patient's ECG at any time or any place at home without space limit and the “dead spot” due to the extended communication coverage by multi-hop wireless connectivity, is proposed. The system consists of a mobile-care device, which is responsible for capturing and wirelessly sending the patient's ECG data, a wireless multi-hop relay network (WMHRN) that is in charge of relaying the data sent by the former, and a residential gateway (RG), which is responsible for gathering and uploading the received ECG data to the remote care server through the Internet to carry out the patient's health condition monitoring and the management of pathological data. However, in order to assure that the ECG data can be effectively and timely forwarded, from the mobile-care device to the RG through the WMHRN, to meet the healthcare quality of service (H-QoS) demand for reliable and real-time end-to-end ECG transmission, the analysis of WMHRN latency in data-forwarding stage and the deployment consideration of wireless relay nodes are investigated in detail in this work. Moreover, an emergency alert service using short message service (SMS), based on the detection of abnormal variation of HR, is also used in the RG to further enhance the healthcare service quality. A prototype of this system has been developed and implemented. Finally, the experimental results are presented to verify the feasibility of the proposed system.  相似文献   

19.
In this paper, the state estimation problems, including filtering and one‐step prediction, are solved for uncertain stochastic time‐varying multisensor systems by using centralized and decentralized data fusion methods. Uncertainties are considered in all parts of the state space model as multiplicative noises. For the first time, both centralized and decentralized estimators are designed based on the regularized least‐squares method. To design the proposed centralized fusion estimator, observation equations are first rewritten as a stacked observation. Then, an optimal estimator is obtained from a regularized least‐squares problem. In addition, for decentralized data fusion, first, optimal local estimators are designed, and then fusion rule is achieved by solving a least‐squares problem. Two recursive equations are also obtained to compute the unknown covariance matrices of the filtering and prediction errors. Finally, a three‐sensor target‐tracking system is employed to demonstrate the effectiveness and performance of the proposed estimation approaches.  相似文献   

20.
The robust fusion steady‐state filtering problem is investigated for a class of multisensor networked systems with mixed uncertainties including multiplicative noises, one‐step random delay, missing measurements, and uncertain noise variances, the phenomena of one‐step random delay and missing measurements occur in a random way, and are described by two Bernoulli distributed random variables with known conditional probabilities. Using a model transformation approach, which consists of augmented approach, derandomization approach, and fictitious noise approach, the original multisensor system under study is converted into a multimodel multisensor system with only uncertain noise variances. According to the minimax robust estimation principle, based on the worst‐case subsystems with conservative upper bounds of uncertain noise variances, the robust local steady‐state Kalman estimators (predictor, filter, and smoother) are presented in a unified framework. Applying the optimal fusion algorithm weighted by matrices, the robust distributed weighted state fusion steady‐state Kalman estimators are derived for the considered system. In addition, by using the proposed model transformation approach, the centralized fusion system is obtained, furthermore the robust centralized fusion steady‐state Kalman estimators are proposed. The robustness of the proposed estimators is proved by using a combination method consisting of augmented noise approach, decomposition approach of nonnegative definite matrix, matrix representation approach of quadratic form, and Lyapunov equation approach, such that for all admissible uncertainties, the actual steady‐state estimation error variances of the estimators are guaranteed to have the corresponding minimal upper bounds. The accuracy relations among the robust local and fused steady‐state Kalman estimators are proved. An example with application to autoregressive signal processing is proposed, which shows that the robust local and fusion signal estimation problems can be solved by the state estimation problems. Simulation example verifies the effectiveness and correctness of the proposed results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号