首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Type specimens have high scientific importance because they provide the only certain connection between the application of a Linnean name and a physical specimen. Many other individuals may have been identified as a particular species, but their linkage to the taxon concept is inferential. Because type specimens are often more than a century old and have experienced conditions unfavourable for DNA preservation, success in sequence recovery has been uncertain. This study addresses this challenge by employing next‐generation sequencing (NGS) to recover sequences for the barcode region of the cytochrome c oxidase 1 gene from small amounts of template DNA. DNA quality was first screened in more than 1800 century‐old type specimens of Lepidoptera by attempting to recover 164‐bp and 94‐bp reads via Sanger sequencing. This analysis permitted the assignment of each specimen to one of three DNA quality categories – high (164‐bp sequence), medium (94‐bp sequence) or low (no sequence). Ten specimens from each category were subsequently analysed via a PCR‐based NGS protocol requiring very little template DNA. It recovered sequence information from all specimens with average read lengths ranging from 458 bp to 610 bp for the three DNA categories. By sequencing ten specimens in each NGS run, costs were similar to Sanger analysis. Future increases in the number of specimens processed in each run promise substantial reductions in cost, making it possible to anticipate a future where barcode sequences are available from most type specimens.  相似文献   

2.
    
A well‐covered reference library is crucial for successful identification of species by DNA barcoding. The biggest difficulty in building such a reference library is the lack of materials of organisms. Herbarium collections are potentially an enormous resource of materials. In this study, we demonstrate that it is likely to build such reference libraries using the reconstructed (self‐primed PCR amplified) DNA from the herbarium specimens. We used 179 rosaceous specimens to test the effects of DNA reconstruction, 420 randomly sampled specimens to estimate the usable percentage and another 223 specimens of true cherries (Cerasus, Rosaceae) to test the coverage of usable specimens to the species. The barcode rbcLb (the central four‐sevenths of rbcL gene) and matK was each amplified in two halves and sequenced on Roche GS 454 FLX+. DNA from the herbarium specimens was typically shorter than 300 bp. DNA reconstruction enabled amplification fragments of 400–500 bp without bringing or inducing any sequence errors. About one‐third of specimens in the national herbarium of China (PE) were proven usable after DNA reconstruction. The specimens in PE cover all Chinese true cherry species and 91.5% of vascular species listed in Flora of China. It is very possible to build well‐covered reference libraries for DNA barcoding of vascular species in China. As exemplified in this study, DNA reconstruction and DNA‐labelled next‐generation sequencing can accelerate the construction of local reference libraries. By putting the local reference libraries together, a global library for DNA barcoding becomes closer to reality.  相似文献   

3.
Ancient genomics     
The past decade has witnessed a revolution in ancient DNA (aDNA) research. Although the field''s focus was previously limited to mitochondrial DNA and a few nuclear markers, whole genome sequences from the deep past can now be retrieved. This breakthrough is tightly connected to the massive sequence throughput of next generation sequencing platforms and the ability to target short and degraded DNA molecules. Many ancient specimens previously unsuitable for DNA analyses because of extensive degradation can now successfully be used as source materials. Additionally, the analytical power obtained by increasing the number of sequence reads to billions effectively means that contamination issues that have haunted aDNA research for decades, particularly in human studies, can now be efficiently and confidently quantified. At present, whole genomes have been sequenced from ancient anatomically modern humans, archaic hominins, ancient pathogens and megafaunal species. Those have revealed important functional and phenotypic information, as well as unexpected adaptation, migration and admixture patterns. As such, the field of aDNA has entered the new era of genomics and has provided valuable information when testing specific hypotheses related to the past.  相似文献   

4.
    
Millions to billions of DNA sequences can now be generated from ancient skeletal remains thanks to the massive throughput of next‐generation sequencing platforms. Except in cases of exceptional endogenous DNA preservation, most of the sequences isolated from fossil material do not originate from the specimen of interest, but instead reflect environmental organisms that colonized the specimen after death. Here, we characterize the microbial diversity recovered from seven c. 200‐ to 13 000‐year‐old horse bones collected from northern Siberia. We use a robust, taxonomy‐based assignment approach to identify the microorganisms present in ancient DNA extracts and quantify their relative abundance. Our results suggest that molecular preservation niches exist within ancient samples that can potentially be used to characterize the environments from which the remains are recovered. In addition, microbial community profiling of the seven specimens revealed site‐specific environmental signatures. These microbial communities appear to comprise mainly organisms that colonized the fossils recently. Our approach significantly extends the amount of useful data that can be recovered from ancient specimens using a shotgun sequencing approach. In future, it may be possible to correlate, for example, the accumulation of postmortem DNA damage with the presence and/or abundance of particular microbes.  相似文献   

5.
6.
    
Avian eggshell is a bio‐ceramic material with exceptional properties for preserving DNA within its crystalline structure, presenting an opportunity to retrieve genomic information from extinct or historical populations of birds. However, intracrystalline DNA has only been recovered from the large, thick eggshell of palaeognaths; members of their more‐diverse sister group (neognaths) lay smaller, thinner eggs that may not exhibit the same propensity for DNA preservation. Here, we use three 40–60‐year‐old museum eggshell specimens of Australian neognath birds to determine the minimum mass of eggshell from which intracrystalline DNA can be retrieved, and to characterize the yield and quality of such DNA. In doing so, we describe the first protocol for successful extraction of intracrystalline DNA from neognath eggshells, with the view to unlocking the potential of vast museum egg collections for genetic research. We were able to retrieve DNA fragments over 200 bp in length from 10 mg of eggshell powder from all three specimens, and demonstrate that expanding the existing blow‐hole can allow sufficient material to be collected for DNA extraction while minimizing damage to the appearance and structural integrity of the egg. Furthermore, we were able to reconstruct near‐complete mitochondrial genomes at a coverage of 40‐83X through shotgun sequencing of these extracts on three NextSeq lanes. Given the current extinction and extirpation rates of many avian species world‐wide, genetic data from eggshell could provide a rapid and cost‐effective approach to examining temporal changes in avian diversity, which is not only becoming crucial for conservation management, but also serve to deepen our understanding of genome‐wide evolutionary processes.  相似文献   

7.
This new century's biology promises more of everything--more genes, more organisms, more species and, in short, more data. The flood of data challenges us to find better and quicker ways to summarize and analyse. Here, we present preliminary results and proofs of concept from three of our research projects that are motivated by our search for solutions to the perils of plenty. First, we discuss how models of evolution can accommodate change to better reflect the dynamics of sequence diversity, particularly when it is becoming a lot easier to obtain sequences at different times and across intervals where the probability of new mutations contributing to this diversity is high. Second, we describe our work on the use of a single locus for species delimitation; this research targets the new DNA-barcoding approach that aims to catalogue the entirety of life. We have developed a single-locus test based on the coalescent that tests the null hypothesis of panmixis. Finally, we discuss new sequencing technologies, the types of data available and the efficacy of alignment-free methods to estimate pairwise distances for phylogenetic analyses.  相似文献   

8.
9.
    
Fish are the most diverse group of vertebrates, fulfil important ecological functions and are of significant economic interest for aquaculture and wild fisheries. Advances in DNA extraction methods, sequencing technologies and bioinformatic applications have advanced genomic research for nonmodel organisms, allowing the field of fish ancient DNA (aDNA) to move into the genomics era. This move is enabling researchers to investigate a multitude of new questions in evolutionary ecology that could not, until now, be addressed. In many cases, these new fields of research have relevance to evolutionary applications, such as the sustainable management of fisheries resources and the conservation of aquatic animals. Here, we focus on the application of fish aDNA to (a) highlight new research questions, (b) outline methodological advances and current challenges, (c) discuss how our understanding of fish ecology and evolution can benefit from aDNA applications and (d) provide a future perspective on how the field will help answer key questions in conservation and management. We conclude that the power of fish aDNA will be unlocked through the application of continually improving genomic resources and methods to well‐chosen taxonomic groups represented by well‐dated archaeological samples that can provide temporally and/or spatially extensive data sets.  相似文献   

10.
    
We present a cost‐effective metabarcoding approach, aMPlex Torrent, which relies on an improved multiplex PCR adapted to highly degraded DNA, combining barcoding and next‐generation sequencing to simultaneously analyse many heterogeneous samples. We demonstrate the strength of these improvements by generating a phylochronology through the genotyping of ancient rodent remains from a Moroccan cave whose stratigraphy covers the last 120 000 years. Rodents are important for epidemiology, agronomy and ecological investigations and can act as bioindicators for human‐ and/or climate‐induced environmental changes. Efficient and reliable genotyping of ancient rodent remains has the potential to deliver valuable phylogenetic and paleoecological information. The analysis of multiple ancient skeletal remains of very small size with poor DNA preservation, however, requires a sensitive high‐throughput method to generate sufficient data. We show this approach to be particularly adapted at accessing this otherwise difficult taxonomic and genetic resource. As a highly scalable, lower cost and less labour‐intensive alternative to targeted sequence capture approaches, we propose the aMPlex Torrent strategy to be a useful tool for the genetic analysis of multiple degraded samples in studies involving ecology, archaeology, conservation and evolutionary biology.  相似文献   

11.
    
The more demanding requirements of DNA preservation for genomic research can be difficult to meet when field conditions limit the methodological approaches that can be used or cause samples to be stored in suboptimal conditions. Such limitations may increase rates of DNA degradation, potentially rendering samples unusable for applications such as genome‐wide sequencing. Nonetheless, little is known about the impact of suboptimal sampling conditions. We evaluated the performance of two widely used preservation solutions (1. DESS: 20% DMSO, 0.25 M EDTA, NaCl saturated solution, and 2. Ethanol >99.5%) under a range of storage conditions over a three‐month period (sampling at 1 day, 1 week, 2 weeks, 1 month, and 3 months) to provide practical guidelines for DNA preservation. DNA degradation was quantified as the reduction in average DNA fragment size over time (DNA fragmentation) because the size distribution of DNA segments plays a key role in generating genomic datasets. Tissues were collected from a marine teleost species, the Australasian snapper, Chrysophrys auratus. We found that the storage solution has a strong effect on DNA preservation. In DESS, DNA was only moderately degraded after three months of storage while DNA stored in ethanol showed high levels of DNA degradation already within 24 hr, making samples unsuitable for next‐generation sequencing. Here, we conclude that DESS was the most promising solution when storing samples for genomic applications. We recognize that the best preservation protocol is highly dependent on the organism, tissue type, and study design. We highly recommend performing similar experiments before beginning a study. This study highlights the importance of testing sample preservation protocols and provides both practical and economical advice to improve DNA preservation when sampling for genome‐wide applications.  相似文献   

12.
    
High‐throughput sequencing (HTS) technologies generate millions of sequence reads from DNA/RNA molecules rapidly and cost‐effectively, enabling single investigator laboratories to address a variety of ‘omics’ questions in nonmodel organisms, fundamentally changing the way genomic approaches are used to advance biological research. One major challenge posed by HTS is the complexity and difficulty of data quality control (QC). While QC issues associated with sample isolation, library preparation and sequencing are well known and protocols for their handling are widely available, the QC of the actual sequence reads generated by HTS is often overlooked. HTS‐generated sequence reads can contain various errors, biases and artefacts whose identification and amelioration can greatly impact subsequent data analysis. However, a systematic survey on QC procedures for HTS data is still lacking. In this review, we begin by presenting standard ‘health check‐up’ QC procedures recommended for HTS data sets and establishing what ‘healthy’ HTS data look like. We next proceed by classifying errors, biases and artefacts present in HTS data into three major types of ‘pathologies’, discussing their causes and symptoms and illustrating with examples their diagnosis and impact on downstream analyses. We conclude this review by offering examples of successful ‘treatment’ protocols and recommendations on standard practices and treatment options. Notwithstanding the speed with which HTS technologies – and consequently their pathologies – change, we argue that careful QC of HTS data is an important – yet often neglected – aspect of their application in molecular ecology, and lay the groundwork for developing a HTS data QC ‘best practices’ guide.  相似文献   

13.
    
DNA barcodes are useful for species discovery and species identification, but obtaining barcodes currently requires a well‐equipped molecular laboratory and is time‐consuming, and/or expensive. We here address these issues by developing a barcoding pipeline for Oxford Nanopore MinION? and demonstrating that one flow cell can generate barcodes for ~500 specimens despite the high basecall error rates of MinION? reads. The pipeline overcomes these errors by first summarizing all reads for the same tagged amplicon as a consensus barcode. Consensus barcodes are overall mismatch‐free but retain indel errors that are concentrated in homopolymeric regions. They are addressed with an optional error correction pipeline that is based on conserved amino acid motifs from publicly available barcodes. The effectiveness of this pipeline is documented by analysing reads from three MinION? runs that represent three different stages of MinION? development. They generated data for (i) 511 specimens of a mixed Diptera sample, (ii) 575 specimens of ants and (iii) 50 specimens of Chironomidae. The run based on the latest chemistry yielded MinION? barcodes for 490 of the 511 specimens which were assessed against reference Sanger barcodes (N = 471). Overall, the MinION? barcodes have an accuracy of 99.3%–100% with the number of ambiguous bases after correction ranging from <0.01% to 1.5% depending on which correction pipeline is used. We demonstrate that it requires ~2 hr of sequencing to gather all information needed for obtaining reliable barcodes for most specimens (>90%). We estimate that up to 1,000 barcodes can be generated in one flow cell and that the cost per barcode can be 相似文献   

14.
    
High‐capacity sequencing technologies have dramatically reduced both the cost and time required to generate complete human genome sequences. Besides expanding our knowledge about existing diversity, the nature of these technologies makes it possible to extend knowledge in yet another dimension: time. Recently, the complete genome sequence of a 4,000‐year‐old human from the Saqqaq culture of Greenland was determined to 20‐fold coverage. These data make it possible to investigate the population affinities of this enigmatic culture and, by identifying several phenotypic traits of this individual, provide a limited glimpse into how these people may have looked. While undoubtedly a milestone in ancient DNA research, the cost to generate an ancient genome, even from such an exceptionally preserved specimen, remains out of reach for most. Nonetheless, recently developed DNA capture methods, already applied to Neanderthal and fossil human mitochondrial DNA, may soon make large‐scale genome‐wide analysis of ancient human diversity a reality, providing a fresh look at human population history.  相似文献   

15.
Genetic analyses using museum specimens and ancient DNA from fossil samples are becoming increasingly important in phylogenetic and especially population genetic studies. Recent progress in ancient DNA sequencing technologies has substantially increased DNA sequence yields and, in combination with barcoding methods, has enabled large-scale studies using any type of DNA. Moreover, more and more studies now use nuclear DNA sequences in addition to mitochondrial ones. Unfortunately, nuclear DNA is, due to its much lower copy number in living cells compared to mitochondrial DNA, much more difficult to obtain from low-quality samples. Therefore, a DNA extraction method that optimizes DNA yields from low-quality samples and at the same time allows processing many samples within a short time frame is immediately required. In fact, the major bottleneck in the analysis process using samples containing low amounts of degraded DNA now lies in the extraction of samples, as column-based methods using commercial kits are fast but have proven to give very low yields, while more efficient methods are generally very time-consuming. Here, we present a method that combines the high DNA yield of batch-based silica extraction with the time-efficiency of column-based methods. Our results on Pleistocene cave bear samples show that DNA yields are quantitatively comparable, and in fact even slightly better than with silica batch extraction, while at the same time the number of samples that can conveniently be processed in parallel increases and both bench time and costs decrease using this method. Thus, this method is suited for harvesting the power of high-throughput sequencing using the DNA preserved in the millions of paleontological and museums specimens.  相似文献   

16.
《遗传》2024,47(1)
从古DNA视角探讨古代生物的遗传组成已有40多年历史。自2005年开始;随着高通量测序技术平台的开发应用及对小片段DNA分子提取能力的加强;古DNA研究跨入全新的深时古基因组时代;不仅解决了诸多生物谱系系统学问题;丰富了包括人类在内的多种生物的迁移、演化细节;而且启动了“全基因组-大数据-多物种”尺度研究生物对气候变化的分子响应;将古DNA研究涉及的样品年代从10万年以内拓展到近200万年前的早更新世。中国科学家近几年在东亚人群遗传演化和迁徙融合方面实现了诸多有影响力的突破;填补了现代人类演化进程中的重要“缺环”。相比而言;学界对除人类之外的脊椎动物古DNA研究关注度较低。本文回顾了第四纪晚期中国大型哺乳动物古DNA研究系列进展;分别总结了相关研究在揭示古代群体与现生群体的系统演化关系、古哺乳动物基因交流、动物种群对气候变化的分子响应等方面的研究突破;并对中国哺乳动物古基因组领域面临的机遇和挑战进行了展望。  相似文献   

17.
  总被引:1,自引:0,他引:1  
DNA microarray and next-generation DNA sequencing technologies are important tools for high-throughput genome research, in revealing both the structural and functional characteristics of genomes. In the past decade the DNA microarray technologies have been widely applied in the studies of functional genomics, systems biology and pharmacogenomics. The next-generation DNA sequencing method was first introduced by the 454 Company in 2003, immediately followed by the establishment of the Solexa and Solid techniques by other biotech companies. Though it has not been long since the first emergence of this technology, with the fast and impressive improvement, the application of this technology has extended to almost all fields of genomics research, as a rival challenging the existing DNA microarray technology. This paper briefly reviews the working principles of these two technologies as well as their application and perspectives in genome research. Supported by the National High-Tech Research Program of China (Grant No.2006AA020704) and Shanghai Science and Technology Commission (Grant No. 05DZ22201)  相似文献   

18.
二代测序技术的进步推动了古DNA研究的发展,古DNA研究在人类起源、动物演化等领域已经做出突出贡献。如何针对特定地点的古DNA样品特征,有效提取挖掘其中蕴含的古生物遗传信息,是发挥古代生物样品在诸多研究领域重要作用的前提。本研究将DNA损伤的两个主要指标(末端碱基替换率、平均片段长度)与样品的埋藏时间、所属地质时期、样品材料类型和建库方法相联系,分析不同因素对古DNA损伤的影响。结果表明:中国东北古脊椎动物样品中的古DNA分子的末端碱基替换率与埋藏点的含水量、样品埋藏时间呈正相关;不同地质时期的样品之间古DNA末端碱基替换率有显著差异;不同样品材料类型对于古DNA的末端碱基替换率未见明显影响;样品古DNA的平均片段长度与以上所研究的因素均无明显关系。研究结果为探明中国东北古脊椎动物样品的古DNA特征提供了分子依据,为有效选取不同地区的古脊椎动物样品及样品发掘后的合理保存提供了借鉴和参考。  相似文献   

19.
    
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   

20.
    
Despite advances that allow DNA sequencing of old museum specimens, sequencing small‐bodied, historical specimens can be challenging and unreliable as many contain only small amounts of fragmented DNA. Dependable methods to sequence such specimens are especially critical if the specimens are unique. We attempt to sequence small‐bodied (3–6 mm) historical specimens (including nomenclatural types) of beetles that have been housed, dried, in museums for 58–159 years, and for which few or no suitable replacement specimens exist. To better understand ideal approaches of sample preparation and produce preparation guidelines, we compared different library preparation protocols using low amounts of input DNA (1–10 ng). We also explored low‐cost optimizations designed to improve library preparation efficiency and sequencing success of historical specimens with minimal DNA, such as enzymatic repair of DNA. We report successful sample preparation and sequencing for all historical specimens despite our low‐input DNA approach. We provide a list of guidelines related to DNA repair, bead handling, reducing adapter dimers and library amplification. We present these guidelines to facilitate more economical use of valuable DNA and enable more consistent results in projects that aim to sequence challenging, irreplaceable historical specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号