共查询到20条相似文献,搜索用时 31 毫秒
1.
Jan‐Tai Kuo Wen‐Cheng Liu Ruey‐Tyng Lin Wu‐Seng Lung Ming‐Der Yang Chou‐Ping Yang Show‐Chyuan Chu 《Journal of the American Water Resources Association》2003,39(3):671-687
ABSTRACT: Field data collected from the Feitsui Reservoir in Taiwan indicate that the water is at a stage between mesotrophic and eutrophic. Recent measurements such as total phosphorus, chlorophyll a and Secchi depth levels suggest that the water quality has been declining. A two‐dimensional, laterally averaged, finite difference hydrodynamic and water quality model was used to simulate the water quality in the Feitsui Reservoir in an effort to determine sound water quality management strategies. The model was calibrated and verified using data collected in 1996 and 1997. The calibrated model was used to simulate algal biomass (in terms of chlorophyll a) levels under various wasteload reduction scenarios. Model results show that 50 percent reduction of the total phosphorus load will improve the existing water quality, shifting the trophic status from eutrophic/mesotrophic to oligotrophic. The modeling effort has yielded valuable information that can be used by decision makers for the evaluation of different management strategies of reducing watershed nutrient loads. 相似文献
2.
Afshin Shabani Xiaodong Zhang Mike Ell 《Journal of the American Water Resources Association》2017,53(4):748-760
Devils Lake is an endorheic lake in the Red River of the North basin in northeastern North Dakota. During the last two decades, the lake water level has risen by nearly 10 m, causing floods that have cost more than 1 billion USD in mitigation measures. Another increase of approximately 1.5 m in the lake water level would cause spillage into the Sheyenne River. To alleviate this potentially catastrophic spillage, two artificial outlets were constructed. However, the artificial drainage of water into the Sheyenne River raises water quality concerns because the Devils Lake water contains significantly higher concentrations of dissolved solids, particularly sulfate. In this study, the Soil and Water Assessment Tool (SWAT) was coupled with the CE‐QUAL‐W2 model to simulate both water balance and sulfate concentrations in the lake. The SWAT model performed well in simulating daily flow in tributaries with ENS > 0.5 and |PBIAS| < 25%, and reproduced the lake water level with a root mean square error of 0.35 m for the study period from 1995 to 2014. The water temperature and sulfate concentrations simulated by CE‐QUAL‐W2 for the lake are in general agreement with the field observations. The model results show that the operation of the two outlets since August 2005 has lowered the lake level by 0.70 m. Furthermore, the models show pumping water from the two outlets raises sulfate concentrations in the Sheyenne River from ~100 to >500 mg/L. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series. 相似文献
3.
Jung Hyun Choi Seon‐A. Jeong Seok Soon Park 《Journal of the American Water Resources Association》2007,43(6):1444-1454
Abstract: This research investigates possible impacts of enlarged water body according to dam reconstruction on the hydrodynamics and water quality of the reservoir using a laterally averaged, two‐dimensional hydrodynamic and transport model, CE‐QUAL‐W2. The lake was formed by the artificial dam in 1983 for agricultural water supply and is currently under consideration of reconstruction so as to expand the volume of reservoir for flood control as well as water supply in downstream areas. To calibrate and validate the model, field‐collected data were compared with model predictions for water level fluctuations and water temperature during the years of 2001 (from January to December) and 2003 (from March to November). The model results showed a good agreement with field measurements both in calibration and verification. Utilizing the model, impacts of dam reconstruction on the thermal hydrodynamics and turbid current were predicted. From the model results, dam reconstruction limited the depth of thermal stratification below 10 meter and formed steep temperature gradient between epilimnion and hypolimnion. The restricted thermal stratification persisted up to the end of September. This result indicated that thermal stratification would become stronger during summer and stay longer after dam reconstruction. In addition, the restricted thermal stratification caused vertical circulation of water mixing lower than 10 meter and isolated the upper water layer from the lower water layer which increased the volume of hypolimnetic water with low temperature. The vertical circulation near the surface also mitigated propagation of density plume within the depth of 10 m which would remain the hypolimnetic water clean. 相似文献
4.
Nancy E. Gove Richard T Edwards Loveday L. Conquest 《Journal of the American Water Resources Association》2001,37(6):1721-1734
ABSTRACT: Human land use is a major source of change in catchments in developing areas. To better anticipate the long‐term effects of growth, land use planning requires estimates of how changes in land use will affect ecosystem processes and patterns across multiple scales of space and time. The complexity of biogeochemical and hydrologic interactions within a basin makes it difficult to scale up from process‐based studies of individual reaches to watershed scales over multiple decades. Empirical models relating land use/land cover (LULC) to water quality can be useful in long‐term planning, but require an understanding of the effects of scale on apparent land use‐water quality relationships. We empirically determined how apparent relationships between water quality and LULC data change at different scales, using LIJLC data from the Willapa Bay watershed (Washington) and water quality data collected along the Willapa and North Rivers. Spatial scales examined ranged from the local riparian scale to total upstream catchment. The strength of the correlations between LTJLC data and longitudinal water quality trends varied with scale. Different water quality parameters also varied in their response to changes in scale. Intermediate scales of land use data generally were better predictors than local riparian or total catchment scales. Additional data from the stream network did not increase the strength of relationships significantly. Because of the likelihood of scale‐induced artifacts, studies quantifying land use‐water quality relationships performed at single scales should be viewed with great caution. 相似文献
5.
Kimberly S. Caviness Garey A. Fox Patrick N. Deliman 《Journal of the American Water Resources Association》2006,42(3):617-627
ABSTRACT: The Mississippi Department of Environmental Quality uses the Steady Riverine Environmental Assessment Model (STREAM) to establish effluent limitations. While the U.S. Environmental Protection Agency has approved of its use, questions arise regarding the model's simplicity. The objective of this research was to compare STREAM with the more commonly utilized Enhanced Stream Water Quality Model (QUAL2E). The comparison involved a statistical evaluation procedure based on sensitivity analyses, input probability distribution functions, and Monte Carlo simulation with site‐specific data from a 46‐mile (74‐km) reach of the Big Black River in central Mississippi. Site specific probability distribution functions were derived from measured rates of reaeration, sediment oxygen demand, photosynthesis, and respiration. Both STREAM and QUAL2E reasonably predicted daily average dissolved oxygen (DO) based on a comparison of output probability distributions with observed DO. Observed DO was consistently within 90 percent confidence intervals of model predictions. The STREAM approach generally overpredicted while QUAL2E generally matched observed DO. Using the more commonly assumed lognormal distribution as opposed to a Weibull distribution for two of the sensitive input parameters resulted in minimal differences in the statistical evaluations. The QUAL2E approach had distinct advantages over STREAM in simulating the growth cycle of algae. 相似文献
6.
介绍了塔城市喀浪古尔水库的基本情况,并对喀浪古尔水库水质调查,分析纳污情况,从保护备用水源,减少农村生活污染、农业污染,加强周边保护、开发协调管理等方面探讨了加强水库防范治理的措施. 相似文献
7.
Hartmut Laabs Gert A. Schultz 《Journal of the American Water Resources Association》1992,28(1):211-222
ABSTRACT: The determination of optimum reservoir operating rules for reservoirs with multiple conflicting objectives is still a difficult task - despite many publications in this field. In this paper a three-step Multi Objective Decision Making (MODM) method is presented, the emphasis of which is placed on the necessity to make the work easy for the decision maker, which many MODM techniques fail to achieve. The method is applied to the development of a compromise optimum operating rule for a multi-purpose reservoir. In the first step of the method stochastic DP is chosen which is combined with the “weighting method” allowing combination of various objectives into one objective function. By systematically varying the weights for the objectives a large number of pareto optimum reservoir operating rules is generated. In the second step of the method the performance of all these operating rules is tested with the aid of a model simulating reservoir operation. The results are statistically analyzed and the reliabilities for attaining the various objectives are computed. The third step of the model applies another MODM technique which allows the decision maker - in a computer dialog - to select his optimum reservoir operating rule from the large number of pareto optimum solutions generated in step 1. Here he can specify his preferences for the various objectives. For this purpose two alternative MODM techniques are offered: Compromise Programming and the SEMOPS method. Their performance is shown along with the generation and selection of operating rules for the multi-objective Wupper reservoir system in Germany. 相似文献
8.
This paper describes the utility of QUAL2E as a modelling package in the evaluation of a water quality improvement programme. In this study, QUAL2E was applied to determine the pollution loads in the river Yamuna during its course through the national capital territory of Delhi, India. The study aimed at examining the influence of different scenarios on river water quality. Four different pollution scenarios were analysed besides the 'business as usual' situation. The study revealed that it was necessary to treat the discharge from drains to the river Yamuna and diversion of a substantial load to the Agra canal for further treatment was also essential. It was also established through this study that maintaining a flow rate of more than 10 m(3)/s in the river could also help preserve the river's water quality. To clearly display the model outcomes and demarcate polluted zones in the river stretch, model results were interfaced with a Geographical Information System (GIS) to produce cartographic outputs. In addition, uncertainty analysis in the form of first-order error analysis and Monte Carlo analysis was performed, to realise the effect of each model parameter on DO and BOD predictions. The uncertainty analysis gave satisfactory results on simulated data. 相似文献
9.
ABSTRACT. Owing to their enormous capacity, ground-water reservoirs are at least equal in importance to the ground water itself. As regulators of water movement in the hydrological cycle, these reservoirs surpass all lakes combined, natural and manmade. While many aquifers are not well understood, data on many others are adequate for long-range broad-scale planning. An example is the basalt aquifer of the Snake River Plain in Idaho. However, the area has managerial problems which concern the time, the place and the feasibility of manipulations of water. All continents of the world contain great aquifers. For every huge aquifer, however, hundreds of smaller ones occur, and even these contain astonishing amounts of water. Aquifers in the Ohio River Basin of the United States are good examples. Management of total water resources is a difficult problem at many places. But many problems could be met and many water shortages alleviated or eliminated by use of aquifers, not merely as sources of water, but as reservoirs for management of water. 相似文献
10.
W.F. Rannie 《Journal of the American Water Resources Association》1980,16(2):207-214
ABSTRACT: The 1950 flood disaster in the Red River Valley, Manitoba, and particularly in Winnipeg made all levels of government aware of the need for control measures. The principal elements of the system which was implemented were two large excavated diversion channels, a storage reservoir, and ring dykes around several small communities. In terms of cost and size, the flood control system is the largest in Canada and despite Federal contributions amounting to nearly 60 percent of the final cost, it represented a considerable fiscal burden for the comparatively small population of Manitoba. Between the opening of the Red River Floodway in 1968 and 1979, a series of exceptional spring peak flows on the Red and Assiniboine Rivers demonstrated the benefits of such a system to a degree which could not have been anticipated at the time the projects were being considered. Furthermore, maximum spring discharges from 1913 to 1978 show a clear rising trend, indicating that the flood hazard is becoming even more severe than was initially assumed; if this trend continues, future benefits will continue to exceed expectations. The overall effectiveness of the hazard reduction program in the Red River Valley, however, has suffered from continued development in unprotected areas. Recent federal-provincial agreements have been reached which will substantially reduce this problem and place greater emphasis on improving the non-structural components of an overall flood hazard reduction program. 相似文献
11.
James R. Vincent James D. Russell 《Journal of the American Water Resources Association》1971,7(4):856-866
ABSTRACT The Colorado River Basin faces the dilemma of an increasing demand for water while presently struggling with salinity concentrations approaching critical levels for some water uses. Based upon projected development salinity concentrations are predicted to exceed 1200 mg/1 at Imperial Dam by the year 2010. Annual losses to the basin economy associated with increased salinity will exceed $50 million by the year 2010. Although methods of controlling salt discharges are relatively unrefined, certain conclusions, based upon Bayesian statistical methods, can be reached. Five basic alternatives for coping with the problem are presented and evaluated in this paper: (1) do nothing; (2) adopt arbitrary salinity standards; (3) limit development; (4) control salt discharges at a cost equal to the cost of doing nothing, or (5) minimize total costs to the basin. Total costs associated with any given alternative, or the given salinity resulting, are the sum of salinity detriments (cost to users for water of increased salinity plus economic multiplier effects) plus the cost of constructing salt discharge control works. These impacts upon basin economy and Colorado River water quality for each alternative are presented and related to questions of equity which will play a role in arriving at any long-term solution to the Basin's problem. 相似文献
12.
Kyle F. Flynn Michael W. Suplee Steven C. Chapra Hua Tao 《Journal of the American Water Resources Association》2015,51(2):421-446
An initial inquiry into model‐based numeric nitrogen and phosphorus (nutrient) criteria for large rivers is presented. Field data collection and associated modeling were conducted on a segment of the lower Yellowstone River in the northwestern United States to assess the feasibility of deriving numeric nutrient criteria using mechanistic water‐quality models. The steady‐state one‐dimensional model QUAL2K and a transect‐based companion model AT2K were calibrated and confirmed against low‐flow conditions at a time when river loadings, water column chemistry, and diurnal indicators were approximately steady state. Predictive simulation was then implemented via nutrient perturbation to evaluate the steady‐state and diurnal response of the river to incremental nutrient additions. In this first part of a two‐part series, we detail our modeling approach, model selection, calibration and confirmation, sensitivity analysis, model outcomes, and associated uncertainty. In the second part (Suplee et al., 2015) we describe the criteria development process using the tools described herein. Both articles provide a fundamental understanding of the process required to develop site‐specific numeric nutrient criteria using models in applied regulatory settings. 相似文献
13.
N. Jay Bassin 《Journal of the American Water Resources Association》1985,21(1):145-150
ABSTRACT: Dinosaur National Monument, in northwestern Colorado, has become a test case in the establishment of a federal reserved water right to instream flows. For the first time, the Interior Department was forced to rigorously defend its claims in a watershed where the federal government did not control the upstream reaches. Inadequate quantification of minimum flow requirements, court orders, and an apparent Congressional ban on the spending of Water Resources Program funds by the Park Service to quantify its water rights have already placed the Service in a difficult position to protect instream flows for maintaining the ecological integrity of the Monument. As late as 1983, administrators of the Park Service were divided over their legal strategy, many wanting to pursue a policy of claiming “natural, historic” flows rather than “minimum” flows. The conditional right to instream flows panted to the Park Service in 1978 was subject to quantification within five years. That deadline has been extended, but it is not likely that the case will reach final settlement this decade. Until the design and conduct of federal water rights quantifications better integrate public policy and law with science, the principle lesson from Dinosaur may have to be repeated. 相似文献
14.
Michael W. Suplee Kyle F. Flynn Steven C. Chapra 《Journal of the American Water Resources Association》2015,51(2):447-470
Nitrogen and phosphorus criteria were developed for 233 km of the Yellowstone River, one of the first cases where a mechanistic model has been used to derive large river numeric nutrient criteria. A water quality model and a companion model which simulates lateral algal biomass across transects were used to simulate effects of increasing nutrients on five variables (dissolved oxygen, total organic carbon, total dissolved gas, pH, and benthic algal biomass in depths ≤1 m). Incremental increases in nutrients were evaluated relative to their impact on predefined thresholds for each variable; the first variable to exceed a threshold set the nutrient criteria. Simulations were made at a low flow, the 14Q5 (lowest average 14 consecutive day flow, July‐September, recurring one in five years), which was derived using benthic algae growth curves and EPA guidance on excursion frequency. An extant climate dataset with an annual recurrence was used, and tributary water quality and flows were coincident with the river's 10 lowest flow years. The river had different sensitivities to nutrients longitudinally, pH being the most sensitive variable in the upstream reach and algal biomass in the lower. Model‐based criteria for the Yellowstone River are as follows: between the Bighorn and Powder river confluences, 55 μg TP/l and 655 μg TN/l; from the Powder River confluence to Montana state line, 95 μg TP/l and 815 μg TN/l. Pros and cons of using steady‐state models to derive river nutrient criteria are discussed. 相似文献
15.
Kellie B. Vach Joseph M. Eilers Mary V. Santelmann 《Journal of the American Water Resources Association》2002,38(3):773-787
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds. 相似文献
16.
Scott A. Wells John A. Gordon 《Journal of the American Water Resources Association》1982,18(4):661-670
ABSTRACT: In developing water quality models for lakes and reservoirs, the assumptions of one-dimensionality (i.e., water quality changes are significant only in one dimension – usually depth), as well as two-dimensionality (considering the length and depth of the water body), have been utilized to predict water quality. In both caws, the assumption of lateral homogeneity is made. A field study was undertaken to determine the change of water quality in the lateral dimension. The main study reservoir was Center Hill Lake in Middle Tennessee. Data were also obtained for Cherokee Lake in East Tennessee. Several water quality parameters (temperature, dissolved oxygen, pH, conductivity, and oxidation reduction potential) were analyzed over the length, breadth, and depth of these reservoirs from pre-stratification through post-stratification. The statistical and theoretical three-dimensional analysis showed the expected variation for each water quality parameter in each direction. The influence of the lateral dimension on water quality management and modeling was found to be negligible. 相似文献
17.
ABSTRACT The 60's drought (1961 1966) which hit the Northeastern United States, had its center over the Delaware River Basin and caused water supply shortages to New York City, Philadelphia, and many other towns and industries in the Basin. Until this event occurred, the existing water supply sources and those planned for the future had been considered adequate, as they were designed for the worst drought of record (usually the 1930-31 drought). In view of this “change in hydrology,” the Delaware River Basin Commission authorized a study (DRBC Resolution 67-4) to re-evaluate the adequacy of existing and planned water supply sources of the Delaware River Basin and its Service Area (New York City and northern New Jersey). Synthetic hydrology is a tool which can be used to overcome many of the limitations of the traditional approach. By analyzing generated streamflow traces in this study, it has been determined that there is a definite relationship between the accumulated rainfall deficiency during the drought and the return periods associated with various durations of runoff in the drought. This indicated that generated traces can be used to standardize the hydrology over an area where the intensity of drought varied. This represented an important facet in the study, because it provided a means to equalize the effects of this drought over the study area, and gave the Delaware River Basin Commission more information so that it could better plan and manage its water resources equitably, not only for the people within the Basin, but for the New York City and northern New Jersey areas as well. Synthetic hydrology was used to determine yield-probability relationships for 50-year periods, and storage-yield-frequency relationships for existing and planned water-supply reservoirs. It was also used to determine yield-probability relationships for reservoir systems within the Basin. In the study, it was determined that monthly streamflow traces and uniform draft rates could be used in yield analysis because of the magnitude of the reservoirs and because seasonal variations of draft rate are small in the study area. Although it was found that with the streamflow generating models (first order Markov) in common use today, it is not possible to definitely determine the actual frequency of a very severe historic drought, it is possible to place a drought in perspective by using synthetic hydrology. The study showed that it is a useful tool in determining water availability over a basin and is useful in studying water management problems such as interbasin transfers, and reservoir systems operations. 相似文献
18.
Lori E. Apodaca Jeffrey B. Bails C. Michelle Smith 《Journal of the American Water Resources Association》2002,38(1):133-149
ABSTRACT: Shallow ground water in areas of increasing urban development within the Upper Colorado River Basin was sampled for inorganic and organic constituents to characterize water‐quality conditions and to identify potential anthropogenic effects resulting from development. In 1997, 25 shallow monitoring wells were installed and sampled in five areas of urban development in Eagle, Grand, Gunnison, and Summit Counties, Colorado. The results of this study indicate that the shallow ground water in the study area is suitable for most uses. Nonparametric statistical methods showed that constituents and parameters measured in the shallow wells were often significantly different between the five developing urban areas. Radon concentrations exceeded the proposed USEPA maximum contaminant level at all sites. The presence of nutrients, pesticides, and volatile organic compounds indicate anthropogenic activities are affecting the shallow ground‐water quality in the study area. Nitrate as N concentrations greater than 2.0 mg/L were observed in ground water recharged between the 1980s and 1990s. Low concentrations of methylene blue active substances were detected at a few sites. Total coliform bacteria were detected at ten sites; however, E. coli was not detected. Continued monitoring is needed to assess the effects of increasing urban development on the shallow ground‐water quality in the study area. 相似文献
19.
Awoke Dagnew Donald Scavia Yu‐Chen Wang Rebecca Muenich Colleen Long Margaret Kalcic 《Journal of the American Water Resources Association》2019,55(5):1288-1305
A large international watershed, the St. Clair‐Detroit River System, containing both extensive urban and agricultural areas, was modeled using the Soil and Water Assessment Tool (SWAT) model. The watershed, located in southeastern Michigan, United States, and southwestern Ontario, Canada, encompasses the St. Clair, Clinton, Detroit (DT), Sydenham (SY), Upper, and Lower Thames subwatersheds. The SWAT input data and model resolution (i.e., hydrologic response units, HRUs), were established to mimic farm boundaries, the first time this has been done for a watershed of this size. The model was calibrated (2007–2015) and validated (2001–2006) with a mix of manual and automatic methods at six locations for flow and water quality at various time scales. The model was evaluated using Nash–Sutcliffe efficiency and percent bias and was used to explore major water quality issues. We showed the importance of allowing key parameters to vary among subwatersheds to improve goodness of fit, and the resulting parameters were consistent with subwatershed characteristics. Agricultural sources in the Thames and SY subwatersheds and point sources from DT subwatershed were major contributors of phosphorus. Spatial distribution of phosphorus yields at HRU and subbasin levels identified locations for potential management targeting for both point and nonpoint sources and revealed that in some subwatersheds nonpoint sources are dominated by urban sources. 相似文献
20.
Leroy F Heitz Shahram Khosrowpanah Jay Nelson 《Journal of the American Water Resources Association》2000,36(3):541-548
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments. 相似文献