首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于风力机整机刚柔耦合模型,文章提出了一种叶片动态气弹扭转变形分析的新方法。该方法采用SIMPACK和AeroDyn软件联合数值仿真对风力机在几种恶劣风况下进行动力学分析,通过对分析结果的变换处理,进而得到叶片在复杂工况下的动态气弹变形数据。采用该方法,重点分析了叶片气弹扭转变形对风力机气动功率及气弹稳定性的影响。该方法为大型风电叶片的气弹特性评价以及气弹剪裁设计提供了一种新的技术手段。  相似文献   

2.
利用有限元分析软件对风力机叶片在不同平均风速作用下的挠度和应力进行了分析。采用Davenport脉动风速谱模拟出不同平均风速,并计算出叶片各部位的挠度及其应力分布。计算结果表明,叶片的振动主要以挥舞振动为主,随着工作风速的增大,叶片挥舞振幅增大,叶片承受的mises应力主要集中在叶片迎风面的中部位置。该研究为风力机叶片的安全设计提供了技术参考。  相似文献   

3.
基于BLADED软件平台,对TMT40.3大型风力机叶片的气动性能进行了分析.分析结果表明:TMT40.3大型风力机叶片应用在GL3A风场时的额定功率能达到1 650 kW,所承受的疲劳强度和极限载荷均能满足该款风力机叶片的设计要求,在叶尖速比为7.8~11.4的风能利用系数均在0.46以上,最高可达0.486,具有较好的气动性能和较宽的风速适应范围.  相似文献   

4.
A model of the evolution of the onshore wind turbine blade mass installed in Denmark is proposed described by a Weibull distribution, and the age of the blades is estimated from decommissioning data to = 29 years when half of the blade mass of an installation year has been decommissioned. This is considerably longer than the 20 year design lifetime of onshore turbines, which is often assumed to be an estimate of the End-of-Life of turbine blades. Thus, blade waste predictions using the simple assumption may predict that installed blade masses are entering recycling processes about 9 years sooner that what is observed in Denmark. The blade mass for decommissioning in Denmark is estimated to peak at 2000 and 5000 ton/year in 2028 and 2045 using the Weibull model.  相似文献   

5.
Most blades available for commercial-grade wind turbines incorporate a straight, span-wise profile and airfoil-shaped cross-sections. These blades are found to be very efficient at low and medium wind speeds compared with the potential energy that can be extracted. This paper explores the possibility of increasing the efficiency of the blades by modifying the blade design to incorporate a swept edge. The design intends to maintain efficiency at low to medium wind speeds by selecting the appropriate orientation and size of the airfoil cross-sections based on an oncoming wind speed and given constant rotation rate. The torque generated from a blade with straight-edge geometry is compared with that generated from a blade with a swept edge as predicted by CFD simulations. To validate the simulations, the experimental curve of the NTK500/41 turbine using LM19.1 blades is reproduced using the same computational conditions. In addition, structural deformations, stress distributions and structural vibration modes are compared between these two different turbine blade surfaces.  相似文献   

6.
Wind turbine rotor blades are sophisticated, multipart, lightweight structures whose aeroelasticity‐driven geometrical complexity and high strength‐to‐mass utilization lend themselves to the application of glass‐fibre or carbon‐fibre composite materials. Most manufacturing techniques involve separate production of the multi‐material subcomponents of which a blade is comprised and which are commonly joined through adhesives. Adhesive joints are known to represent a weak link in the structural integrity of blades, where particularly, the trailing‐edge joint is notorious for its susceptibility to damage. Empiricism tells that adhesive joints in blades often do not fulfil their expected lifetime, leading to considerable expenses because of repair or blade replacement. Owing to the complicated structural behaviour—in conjunction with the complex loading situation—literature about the root causes for adhesive joint failure in blades is scarce. This paper presents a comprehensive numerical investigation of energy release rates at the tip of a transversely oriented crack in the trailing edge of a 34m long blade for a 1.5MW wind turbine. First, results of a non‐linear finite element analysis of a 3D blade model, compared with experimental data of a blade test conducted at Danmarks Tekniske Universitet (DTU) Wind Energy (Department of Wind Energy, Technical University of Denmark), showed to be in good agreement. Subsequently, the effects of geometrical non‐linear cross‐section deformation and trailing‐edge wave formation on the energy release rates were investigated based on realistic aeroelastic load simulations. The paper concludes with a discussion about critical loading directions that trigger two different non‐linear deformation mechanisms and their potential impact on adhesive trailing‐edge joint failure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
结合有限元分析方法和叶片振动试验方法,利用最少的试验设备,检测出叶片危险部位的相应数据,以提高疲劳试验的可靠性。通过理论计算和数学建模相结合的方法,确定叶片阴阳两面最大变形位置,使试验条件更符合叶片的实际工况。分析试验结果显示,被测叶片达到了设计标准的要求。  相似文献   

8.
大型水平轴式风电叶片的结构设计   总被引:1,自引:0,他引:1  
风电叶片是风力发电设备的关键部件之一,其制造成本占总成本的20%~30%.叶片结构是叶片捕获风能的保证,并直接影响风力发电设备的运行寿命.因此,叶片结构设计的好坏在很大程度上决定了风力发电设备的可靠性和利用风能的成本.文章从材料、结构形式、铺层设计、结构分析等4个方面详细地阐述了风电叶片结构的设计技术.  相似文献   

9.
针对多种受损工况下的风机叶片损伤诊断问题,文章基于模态理论对受损前和受损后的风机叶片进行位移和应变模态分析.首先建立风机叶片的三维模型并对其进行有限元分析;然后模拟叶片两位置不同的损伤状况,比较各工况下位移模态曲线、应变模态曲线和应变模态差分曲线在受损前后的变化规律,进而对叶片进行损伤辨识;最后选取应变模态变化率和由差...  相似文献   

10.
Kevin Cox  Andreas Echtermeyer 《风能》2014,17(12):1925-1943
This paper utilized the inherent directional properties of composite materials to increase the critical buckling load of a 70 m carbon/glass hybrid wind turbine blade. The effect of changing the fiber orientations of the less stiff, off‐axis glass fiber plies (referred to as stability plies in this paper) was studied via nonlinear finite element buckling simulations. The orientation of the stability plies was found to influence the onset of the Brazier effect, which further influenced blade stability and buckling failure location. Although both blade weight and laminate thickness remained constant, an increase in critical buckling load of 8% was achieved with a negligible change in bending stiffness. The more stable blade allowed for removal of material leading to a decrease in maximum laminate thickness and a drop in blade mass of 3.3%. Modifications to the ply stacking sequence and carbon fiber usage were also considered and were found to affect the buckling load but not necessarily the optimum fiber orientation of the stability plies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
One serious challenge of energy systems design, wind turbines in particular, is the need to match the system operation to the variable load. This is so because system efficiency drops at off‐design load. One strategy to address this challenge for wind turbine blades and obtain a more consistent efficiency over a wide load range, is varying the blade geometry. Predictable morphing of wind turbine blade in reaction to wind load conditions has been introduced recently. The concept, derived from fish locomotion, also has similarities to spoilers and ailerons, known to reduce flow separation and improve performance using passive changes in blade geometry. In this work, we employ a fully coupled technique on CFD and FEM models to introduce continuous morphing to desired and predetermined blade design geometry, the NACA 4412 profile, which is commonly used in wind turbine applications. Then, we assess the aerodynamic behavior of a morphing wind turbine airfoil using a two‐dimensional computation. The work is focused on assessing aerodynamic forces based on trailing edge deflection, wind speed, and material elasticity, that is, Young's modulus. The computational results suggest that the morphing blade has superior part‐load efficiency over the rigid NACA blade. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
通过气固两相流实验考查了风机叶片材料在不同风速、不同粒径下的冲蚀磨损率。采用FLUENT软件对相应实验条件进行数值模拟表明:随着风速的提高,磨粒所具有的动能与切应力也随之增大,当风速由7.9 m/s提高到17.4 m/s时,达到最大冲蚀率为0.004 32 kg/(m2·s);冲蚀率随着粒径的增大呈现先上升后下降的趋势,当粒径为0.109~0.212 mm时,磨粒对试样的最大冲蚀率为0.001 51 kg/(m2·s)。模拟验证了实验所得的冲蚀规律,并预测了各实验条件下的最大理论冲蚀率。  相似文献   

13.
Recurrent non‐destructive testing inspections are necessary to prevent damages in wind turbine rotor blades, but so far, there is no established method that detects defects in blades from greater distances – although this becomes increasingly important in the context of hardly accessible offshore wind parks. Thermography is a promising method for detecting subsurface defects, but various challenges arise when this method is applied on‐site to turbine blades in operation. Disturbing influences from the environment easily lead to a misinterpretation of thermograms (i.e. thermographic images), such as thermal signatures caused by reflections, dirt and other superficial inhomogeneities. This study explores several problems and effects that arise, when (rotating) blades are monitored with thermography. It will then be demonstrated that a meaningful defect inspection in this scenario is essentially restricted to a procedure following three steps: Firstly, calculating the so‐called difference thermograms of all blade pairs for eliminating disturbing reflections. Secondly, identifying potentially relevant signals, which are associated neither with structural features nor with dynamical effects, and the identification of these signals' allocations (through comparison of all difference thermograms with each other). And thirdly, comparing these signals with (processed) photos for excluding incorrect indications by surface effects. Unlike common thermographic analysis methods, which typically only include an aspect of this procedure, the composition presented in this contribution constitutes an advanced technique for minimizing disturbing influences in thermograms. The proposed thermographic technique enables the detection of potential subsurface defects within rotating rotor blades from greater distances – such as from the ground, air crafts or vessels. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Yu Wang  Yeqiang Deng  Yilu Liu  Lu Qu  Xishan Wen  Lei Lan  Jian Wang 《风能》2019,22(8):1071-1085
The blades of a wind turbine rotate during normal operation. To investigate the influence of blade rotation on the lightning‐attracting ability of a wind turbine, a discharge test platform is designed for scaled wind turbines. The 50% impulse voltages and flash probabilities of the scaled wind turbines with gap distances of 1 to 8 m in the static and rotary conditions are determined by using the discharge test and selective discharge test. The discharge test for a single wind turbine with a gap of 1 to 2 m indicates that the breakdown voltages of the gap between the scaled turbine and electrodes increases with an increase in the blade rotation speed. However, the discharge test with a gap distance of 4 to 8 m indicates that the breakdown voltage of the fan decreases with an increase in the blade rotation speed. The test results of the scaled dual wind turbines experiment have the same rules. To explain this phenomenon, the influence of wind speed on the space‐charge distribution and electrical field intensity of corona discharge is simulated in the background of a target thundercloud. The rotation of the fan reduces the space‐charge density near the area of the blade tip, which leads to an increase in the field strength near the blade tip of the wind turbine and a decrease in the field strength away from the blade tip. This influence varies in short and long air gap, resulting in opposite relationships between discharge voltage and distance from the tip of the turbine. The results can provide a reference for the lightning protection of wind turbines.  相似文献   

15.
Two shallow-angled symmetric and asymmetric skins, with off-axis fiber angles of less than 45°, were proposed and employed to a 5 MW wind turbine blade. For the symmetric configuration, shallow-angled skins were applied to both the pressure and suction sides of the blade, while, for the asymmetric configuration, only the pressure side was implemented with a shallow-angled skin, keeping the conventional 45-degree-angled skin for the suction side. The blade tip deflection, modal frequencies, buckling stability, and failure index were computed for off-axis fiber angles of 45°, 35°, and 25°. The use of shallow-angled skins improved blade bending stiffness and strength. The buckling resistance decreased for symmetric skins and remained unchanged for asymmetric skins; the former case was compensated for by increasing the core thickness. For both skin configurations, a reduction in the blade failure index of up to 18% and 38%, and mass reductions of up to 8% and 13% were demonstrated for the 35° and 25° shallow-angled skins, respectively.  相似文献   

16.
This paper presents results out of investigations of the DEBRA‐25 wind turbine blades. Almost unique in the history of modern wind energy, these blades were in operation for 18 years next to a weather station and were investigated afterward. Therefore, the loads experienced in the operational life could be post‐processed accurately with the measured data of the weather station and the turbine. The blades are made of materials that are similar with today's wind turbines. Furthermore, intensive laboratory tests and free field tests have been carried out, and all load assumptions and data and results are still available today. The results include experimental investigations on the moisture content of the load‐carrying material, static and fatigue behavior of the material, the relaxation of the coupling joints, the natural frequencies of the blade and a full scale static blade test. It is shown that the structural performance of the DEBRA‐25 service blades is comparable with modern wind turbine blades. Although some damage was found by visual inspection, the service blade of the DEBRA‐25 showed excellent mechanical behavior in the full scale blade test. Only small changes of the edgewise eigenfrequencies were detected. The pre‐tensioning forces of the IKEA bolts, where the two blade parts are connected, were measured and were still adequate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
文章给出了风力机叶片的动力特性计算模型、结构体模态应变能的概念及其计算模型,定义了结构体损伤状态下的模态应变能变化率概念并给出其计算模型。在此基础上,以15 kW风力机叶片为研究对象,在ANSYS中建立有限元分析模型,计算该叶片在不同损伤位置与不同损伤程度下的频率以及模态应变能变化率,并以模态应变能变化率作为表征结构损伤的标识量,对含损伤的风力机叶片结构进行损伤辨识仿真。通过神经网络建立起损伤标识量和损伤状态之间的映射模型,为实现叶片损伤的诊断提供理论依据。  相似文献   

18.
为进行三维风电叶片振动系统固有频率相关性分析,采用MATLAB和ANSYS共同建立了风电叶片三维有限元参数模型,并分析了叶片固有振动特性.考虑系统随机结构参数对风电叶片固有振动的影响,运用将Monte Carlo与ANSYS相结合的方法对叶片固有振动特性进行相关性分析,进而判断其对随机结构参数的敏感性,形成了一种叶片结...  相似文献   

19.
如果解决不好离网型风力发电机的大风限速保护问题,就会大大地降低其可靠性和安全性.文章从风轮与发电机的匹配人手,一改传统离网型风力发电机最佳功率匹配运行为峰前匹配运行,使风力发电机在大风时保持较低的风能利用系数,具有大风时的限速保护作用.  相似文献   

20.
以800W水平轴风力发电机叶片为对象,研究其叶片的模态特性.从理论上介绍了应力刚化和旋转软化对叶片固有频率的影响,并给出了考虑应力刚化和旋转软化效应的振动方程;利用ANSYS软件建立了有限元模型,分别对风力发电机叶片在仅考虑应力刚化或旋转软化时,以及同时考虑应力刚化和旋转软化时的模态特性进行了计算分析.计算结果表明:应力刚化对固有频率的影响比旋转软化大;仅考虑旋转软化时,叶片的固有频率比零旋转角速度时低;而综合两者的影响时,叶片的固有频率比零旋转角速度时高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号