首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An output feedback regulation problem is considered for a class of high‐order feedforward nonlinear systems with delay in the input under measurement sensitivity. The key features are that the considered systems have uncertain high‐order feedforward nonlinearity and unknown time‐varying delay in the input. Then, the controller is supposed to be engaged where the output feedback information is distorted by measurement sensitivity. Our proposed controller has two gains—fixed and adaptive gains. The fixed gain is first designed to compensate for measurement sensitivity, and the adaptive gain is next utilized to dominate both unknown input delay and uncertain high‐order feedforward nonlinearity. Simulation examples are given to highlight the advantage of our control scheme.  相似文献   

2.
This paper considers the global finite‐time output‐feedback stabilization for a class of uncertain nonlinear systems. Comparing with the existing related literature, two essential obstacles exist: On the one hand, the systems in question allow serious parametric unknowns and serious time variations coupling to the unmeasurable states, which is reflected in that the systems have the unmeasurable states dependent growth with the rate being an unknown constant multiplying a known continuous function of time. On the other hand, the systems possess remarkably inherent nonlinearities, whose growth allows to be not only low‐order but especially high‐order with respect to the unmeasurable states. To effectively cope with these obstacles, we established a time‐varying output‐feedback strategy to achieve the finite‐time stabilization for the systems under investigation. First, a time‐varying state‐feedback controller is constructed by adding an integrator method, and by homogeneous domination approach, a time‐varying reduced‐order observer is designed to precisely rebuild the unmeasurable states. Then, by certainty equivalence principle, a desired time‐varying output‐feedback controller is constructed for the systems. It is shown that, as long as the involved time‐varying gain is chosen fast enough to overtake the serious parametric unknowns and the serious time variations, the output‐feedback controller renders that the closed‐loop system states converge to zero in finite time. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This article studies the adaptive output feedback control problem of a class of uncertain nonlinear systems with unknown time delays. The systems considered are dominated by a triangular system without zero dynamics satisfying linear growth in the unmeasurable states. The novelty of this article is that a universal-type adaptive output feedback controller is presented to time-delay systems, which can globally regulate all the states of the uncertain systems without knowing the growth rate. An illustrative example is provided to show the applicability of the developed control strategy.  相似文献   

4.
This paper considers the robust output regulation problem for time‐varying nonlinear systems with a time‐varying exosystem. A framework for converting the problem into a stabilization problem of an augmented system is established. The problem is solved for a class of time‐varying output feedback systems with a time‐varying exosystem. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

5.
In this paper, the problem of global state regulation by output feedback is investigated for a class of uncertain nonlinear systems satisfying some relaxed upper‐triangular‐type condition. Using a linear dynamic gain observer with two dynamic gains and introducing two appropriate change of coordinates, we give a constructive design procedure for the linear‐like output feedback stabilizing controller. It is proved that the proposed controller globally regulates all the states of the uncertain system and maintains global boundedness of the closed‐loop system. An example is provided to demonstrate the effectiveness of the proposed design scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Constructive control techniques have been proposed for controlling strict feedback (lower triangular form) stochastic nonlinear systems with a time‐varying time delay in the state. The uncertain nonlinearities are assumed to be bounded by polynomial functions of the outputs multiplied by unmeasured states or delayed states. The delay‐independent output feedback controller making the closed‐loop system globally asymptotically stable is explicitly constructed by using a linear dynamic high‐gain observer in combination with a linear dynamic high‐gain controller. A simulation example is given to demonstrate the effectiveness of the proposed design procedure. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper is concerned with robust quantized output feedback control problems for uncertain discrete‐time systems with time‐varying delay and saturation nonlinearity. It is assumed that the quantizer is of the saturating type. A new framework for the local boundedness stabilization of quantized feedback systems is developed. Attention is focused on finding a quantized static output feedback controller such that all trajectories of the resulting closed‐loop system starting from an admissible initial basin converge to a bounded region strictly within the initial basin. A quantized feedback controller is proposed, which comprises output feedback and the exogenous signal parts. Simulation examples are given to illustrate the effectiveness and advantage of the proposed methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we study the event‐triggered global robust practical output regulation problem for a class of nonlinear systems in output feedback form with any relative degree. Our approach consists of the following three steps. First, we design an internal model and an observer to form the so‐called extended augmented system. Second, we convert the original problem into the event‐triggered global robust practical stabilization problem of the extended augmented system. Third, we design an output‐based event‐triggered control law and a Zeno‐free output‐based event‐triggered mechanism to solve the stabilization problem, which, in turn, leads to the solvability of the original problem. Finally, we apply our result to the controlled hyperchaotic Lorenz systems.  相似文献   

9.
This paper considers semi‐global output feedback control for more general nonlinear systems with unknown time‐delay and output function whose derivative is unbounded from above. By introducing a new observer and using the backstepping design method and the Razumikhin stability theorem, an output feedback controller is constructed to achieve a semi‐global stability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the cooperative linear output regulation problem of a class of heterogeneous networked systems with a common reference input but with different disturbances for individual nodes. A novel distributed control law is presented based on dynamic measurement output feedback. It is shown that the overall networked closed-loop control system is asymptotically stable and the output regulation errors asymptotically approach zero as time goes to infinity under a sufficient and necessary condition. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed control law.  相似文献   

11.
We investigate the problem of global stabilisation by linear output feedback for a class of uncertain nonlinear systems with zero-dynamics. Compared with the previous works, new dilation-based assumptions are introduced that allow the system nonlinearities and its bounding functions to be coupled with all the states. The nonlinear systems of this paper can be considered as an extended form of some low triangular and feedforward systems. Dynamic gain scaling technique is applied to the controller design and stability analysis. It is proved that with a unifying linear controller structure and flexible adaptive laws for the observer gain, global stabilisation of the nonlinear systems can be achieved.  相似文献   

12.
This paper studies the event‐triggered practical finite‐time output feedback stabilization problem for a class of uncertain nonlinear systems with unknown control gains. First, a reduced‐dimensional observer is employed to implement the reconstruction of the unavailable states. Furthermore, a novel event‐triggered output feedback control strategy is proposed based on the idea of backstepping design and sign function techniques. It is shown that the practical finite‐time stability of the closed‐loop systems is ensured by Lyapunov analysis and related stability criterion. Compared with the existing methods, the main advantage of this strategy is that the observer errors and event‐trigger errors can be processed simultaneously to achieve the practical finite‐time stability. Finally, an example is adopted to demonstrate the validity of the proposed scheme.  相似文献   

13.
This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.  相似文献   

14.
15.
This paper considers the global finite‐time output feedback stabilization of a class of nonlinear high‐order feedforward systems. By using the homogeneous domination method together with adding a power integrator method and overcoming several troublesome obstacles in the design and analysis, a global finite‐time output feedback controller with reduced‐order observer is recursively designed to globally finite‐time stabilize nonlinear high‐order feedforward systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
ABSTRACT

This paper investigates the problem of global regulation via output feedback for a class of triangular structural nonlinear systems with unknown measurement sensitivity. Two kinds of triangular structure nonlinear systems, namely upper triangular systems and lower triangular systems, are considered here, and the key features of our considered systems are that there are uncertain linear growth condition in the nonlinear terms. Firstly, for a class of upper triangular nonlinear systems with unknown measurement sensitivity, an output feedback controller is designed such that global regulation of the system is achieved. Then, for a class of lower triangular nonlinear systems with unknown measurement sensitivity, global regulation is realised in a unifying framework. Finally, two simulation examples are respectively given to demonstrate the effectiveness of the theoretical results.  相似文献   

17.
The problem of global adaptive state regulation is investigated via output feedback for uncertain feedforward nonlinear time‐delay systems. Compared with existing results, our control schemes can be applicable to more general nonlinear time‐delay systems because of combining the low‐gain scaling approach with the backstepping method. In particular, we allow that there exist uncertain output function and uncertain growth rate imposed on nonlinear terms. Also, one considers a class of nonlinear systems with main‐axis delay. By the Lyapunov–Krasovskii theorem, delay‐independent controllers are proposed by constructing novel low‐gain observers driven by system input, to regulate the states of original system while all the closed‐loop signals are globally bounded. Furthermore, two examples are given to illustrate the usefulness of our results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the design of a robust continuous sliding mode controller for the output regulation of a class of minimum‐phase nonlinear systems. Previous work has shown how to do this by incorporating a linear servocompensator in the sliding mode design, but the transient performance is degraded when compared to ideal sliding mode control. Extending previous ideas from the design of ‘conditional integrators’ for the case of asymptotically constant references and disturbances, we design the servocompensator as a conditional one that provides servocompensation only inside the boundary layer; achieving asymptotic output regulation, but with improved transient performance. We give both regional as well as semi‐global results for error convergence, and show that the controller can be tuned to recover the performance of an ideal sliding mode control. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
We investigate the problem of robust adaptive tracking by output feedback for a class of uncertain nonlinear systems. Based on the high‐gain scaling technique and a new adaptive law, a linear‐like output feedback controller is constructed. Only one dynamic gain is designed, which makes the controller easier to implement. Furthermore, by modifying the update law, the adaptive controller is robust to bounded external disturbance and is able to guarantee the convergence of the output tracking error to an arbitrarily small residual set. A numerical example is used to illustrate the effectiveness of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, an output feedback controller is studied to regulate a class of upper triangular nonlinear systems with uncertain time‐varying delays. The key features of our considered system are that there are uncertain time‐varying delays in both states and input and the high‐order nonlinearity is in a more relaxed form over the previous results. Theoretical analysis and numerical example are presented to show the benefits of our controller. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号