首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
沈继刚  李宏图  王勇 《宽厚板》2011,17(2):23-26
简要介绍大单重特厚钢板的特征,详细分析了大单重特厚板轧制生产中的原料制备、高压水除鳞、轧制、冷却、压平、剪切以及热处理等各个工序,列举了目前国内大单重特厚板轧机的现状。  相似文献   

2.
圆筒形压坯单重的变量式标法李启芳(南宁市粉末冶金厂,广西530001)粉末冶金产品的压坯密度与产品性能关系极大,应严格控制。在压制工序中,要控制好压坯的尺寸和单重。最常见的圆筒形压坯单重由下式计算:式中m——压坯单重,gh——压坯高度,mmp——压坯...  相似文献   

3.
湿法炼锌诸工序中,锌电积为耗电大户,占炼锌生产成本的70%。本文以某湿法炼锌厂电积工序阴阳极板采用夹接法连接为例,根据生产实践提出在阴极导电片合适位置上焊接铜片,来固定导电片夹,消除极板在同槽内错位现象,从而消除阴极板边部烂边现象,增加锌的产出,降低电耗,提高作业效率,达到很好的节电效果。  相似文献   

4.
以汽车外板为代表的冷轧板及用于表面处理的薄板材,用户对其质量的要求日益严格,这就要求连铸工序能为下工序提供表面无缺陷、更纯净的铸坯。由炼钢原因带来的非金属夹杂物,是造成产品质量缺陷的主要原因之一,这些夹杂会残留在钢中,成为成品缺陷的直接原因。另外,因为水口堵塞等原因使铸流偏流,或者是保护渣卷入等异常操作是导致缺陷的发生的间接原因。  相似文献   

5.
对影响6 mm薄规格耐磨板淬火板形的因素进行了分析,通过保证原始板形和抛丸质量,控制热处理保温和淬火工序,改善了6 mm薄规格耐磨板的淬火板形.  相似文献   

6.
高强度薄规格中厚板板型控制工艺研究   总被引:1,自引:0,他引:1  
本文针对影响高强度薄规格中厚板变形的主要工序进行分析,通过实施精轧机辊凸度控制、ACC冷却均匀性控制、高温剪切+全程回火等工艺措施,解决了高强度薄规格中厚板在生产线上的严重变形问题,研究出一种流程短、热处理产量高、能耗低的高强度薄规格钢的生产组织方案。  相似文献   

7.
杨德明 《山东冶金》2007,29(1):16-18
为降低生产成本,通过分析钢板形成魏氏组织的原因以及中间坯厚度、道次变形量、低温轧制和控制冷却等对钢板组织晶粒度和性能的影响,探讨了采用铌微合金化代替钒生产不同厚度Q345B钢板的最佳生产工艺。工艺改进后,工序控制稳定,工序能力指数较高,冲击值平均提高78%,标准偏差由原来的23%缩小到5.96%,延伸率平均提高21%,标准偏差由原来的7.3%缩小到1.86%。  相似文献   

8.
本文介绍了电子工业中广泛采用的切割半导体晶片和基片的金刚石薄刀片的基本特点和技术要求;概述了粉末冶金法制取铜合金基体-金刚石薄刀片的基体材料、工艺流程和几个关键工序。对刀片的主要技术参数测定和切割试验分析表明,铜合金基体-金刚石薄刀片完全符合使用技术要求。  相似文献   

9.
吴俊 《宝钢技术》2005,(4):24-27
针对不锈钢热轧生产线使用热卷箱过程中出现的各类问题进行全面系统的解析,对生产过程控制参数进行优化和调整,逐步改变了热卷箱生产控制不合理的参数及结构.经实际运用,各类矛盾逐步缓解.不锈钢、薄规格产品的生产中,热卷箱正在发挥巨大作用,板坯单重、不锈钢质量问题趋于好转.  相似文献   

10.
研究了用铜片脱除分铜液中的硒、碲,考察了反应温度、反应时间及铜片加入量对硒、碲去除率的影响。确定最佳条件为:反应时间4h,反应温度90℃,铜片加入量200g/L以上。半工业化试验结果表明,分铜液中的硒碲脱除得比较彻底,可以返回电解。  相似文献   

11.
薄板坯连铸结晶器传热行为的研究   总被引:1,自引:0,他引:1  
杨晓江  白健  杨春政 《河南冶金》2004,12(3):13-14,38
H^2长漏斗型的结晶器(H^2——High speed High quality)是唐钢建设的FTSC工艺薄板坯连铸机的最关键设备。本文通过在结晶器四个面上安装的194个热电偶,实时提供铜板的温度变化和分布情况,研究了薄板坯连铸结晶器的传热特性,并分析了将温度数据转换成的热映像的作用,为工艺参数的调整提供依据。  相似文献   

12.
A direct die-filling thixoforging method is designed to fabricate aluminum thin plates with a pattern of microchannels in a single forming operation. Extruded AA2024 and AA7075 wrought aluminum billets are used. A recrystallization and partial remelting process is used to prepare the semisolid slurries required for the forming process. Under a thixoforging pressure of 70 MPa, AA7075 thin plates are successfully thixoforged in a temperature range of 883 K to 893 K (610 °C to 620 °C), corresponding to liquid fractions of ~30 to 50 pct in the semisolid slurry. AA2024 thin plate requires a thixoforging temperature range of 888 K to 898 K (615 °C to 625 °C), corresponding to the liquid fractions of ~45 to 60 pct. Final microstructures of the thin plates comprise primary α-Al equiaxed globular grains in a matrix of a solidified liquid phase. With increasing thixoforging temperature, the yield strength values continuously decrease. The ultimate tensile strength (UTS) values of the thin plates initially decrease with increasing thixoforging temperature from 883 K to 888 K (610 °C to 615 °C) and from 888 K to 893 K (615 °C to 620 °C) for the AA7075 and AA2024 thin plates, respectively. The UTS values stabilize and slightly enhance when the thixoforging temperatures are further increased to 893 K and 898 K (620 °C and 625 °C) for the AA7075 and AA2024 thin plates, respectively. Very brittle behavior (elongation value of ~1 pct) is observed for the AA7075 thin plates thixoforged at 883 K and 888 K (610 °C and 615 °C). The elongation value increases to 3 pct with increasing the thixoforging temperature to 893 K (620 °C). In contrast, larger elongation values (between 4 and 6 pct) are achieved for the AA2024 thin plates. Increasing the thixoforging pressures from 70 to 100 MPa and then to 150 MPa improves the tensile properties of the thin plates. The tensile properties of the thixoforged thin plates are linked to their microstructural characteristics and processing conditions and are discussed here in detail.  相似文献   

13.
Nanoindentation is used in a variety of fields to measure material hardness and elastic modulus. This test technique is especially attractive for thin films because of the difficulty of conducting tensile or other conventional mechanical characterization tests on thin film specimens, and because it requires only a small surface area for testing. However, the standardization process for this new measurement method is still in progress. To test the ability of current measurement procedures to provide comparable results, a round robin was conducted. Invitations to participate were sent to over 100 laboratories. Two specimens, a copper film on a silicon substrate and an uncoated substrate, were distributed to each of 33 laboratories. The choice of measurement procedure was left to the performing organizations. By the end of the reporting period, 27 sets of results were received. While the average reported uncertainty (1 standard deviation) among the individual participants was 4 pct of the average hardness, the interlaboratory standard deviation of the hardness values was 15 pct. Similarly, the average reported uncertainty of the modulus was 5 pct of the average value, but the interlaboratory standard deviation of the modulus was 19 pct. None of the measurement variables examined in this round robin, including instrument type, analysis procedure, time since instrument calibration, chip mounting procedure, and tip condition, and neither of the potential covariant effects, chip location in the wafer and test date, were found to have a statistically significant effect on the reported hardness or modulus. This article is based on a presentation given in the symposium entitled “Deformation and Fracture from Nano to Macro: A Symposium Honoring W.W. Gerberich’s 70th Birthday,” which occurred during the TMS Annual Meeting, March 12–16, 2006, in San Antonio, Texas, and was sponsored by the Mechanical Behavior of Materials and Nanomechanical Behavior Committees of TMS.  相似文献   

14.
根据临钢中板厂钢板剪切过程中出现的长宽尺寸偏差问题,分析了其产生的原因,制定出相应的控制措施,保证了钢板长宽尺寸偏差100%符合国际,80%达到厂内控标准。  相似文献   

15.
In order to find out the cause of surface microcrack on 304 austenitic stainless cold rolled coils which is produced in a steel plant of China, lots of studies have been carried out. The results indicated that the copper guide of steekle mill used in hot rolling process contacts directly with the hot rolled coil, so parts of copper melt and glued to the surface of the stainless steel plates due to a higher temperature of stainless steel plates than the copper melting temperature, which leads to deterioration of austenitic grain boundaries. Shear stress produced in the process of repeat-rolling on finishing mill induces the surface microcracks and promotes it. After changing the copper guide to the cast steel one, such kinds of surface microcracks have never appeared.  相似文献   

16.
采用硝酸溶解样品,选择Cu 324.754nm为分析线,Y 377.433nm作为内标线,其中Y的质量浓度为10mg/L,优化了试验条件,建立了采用电感耦合等离子体原子发射光谱法(ICP-AES)测定铜合金中主量元素铜的分析方法。铜的质量分数在20.00%~73.00%范围内,和分析元素与内标元素谱线强度比呈线性,线性相关系数r=0.999 7。方法用于分析两个铜合金样品中铜,测定结果的相对标准偏差(RSD,n=10)为0.39%和0.30%,远低于不采用内标法测定结果的相对标准偏差(RSD,n=10)。按照实验方法测定4种铜合金标准样品中铜,测定值与认定值一致。  相似文献   

17.
POC新型圆形稀油密封煤气柜侧板为双向定尺板,轧制过程中尺寸超差,现场需对超差部分进行处理.侧板制作过程中需对制作精度、组对精度进行控制,要保证制作的精度必须做专门的胎具.  相似文献   

18.
使用行业标准方法 YS/T 745.1-2010碘量法测定铜阳极泥中铜时,采用氢溴酸除去试样中硒、砷、锑、锡等干扰元素,溶样过程操作繁琐,耗时长,易发生溅跳而造成无效结果,且检测效率低,因此不适用于冶炼企业大批量样品同时快速分析检测。试验使用盐酸分解试样,用硝硫混酸初步除硒等杂质、再用溴进一步除杂,替代氢溴酸除去试样中的杂质元素,从而对YS/T 745.1-2010碘量法测定铜阳极泥中铜的方法进行了改进。通过试验确定硝硫混酸用量为15mL,而后加入3mL盐酸溶解至溶液体积剩余约0.5mL时能完全溶解盐类。按照实验方法测定铜阳极泥试样中铜,测定结果的相对标准偏差(RSD,n=7)小于0.50%;各试样测定结果与行业标准方法YS/T 745.1-2010结果一致,且两种方法间不存在显著性差异,可用于冶炼企业大批量快速分析检测铜阳极泥中铜量。  相似文献   

19.
硫的存在会导致集成电路用高纯铜硬度增加,进而影响铜布线的性能,因此准确测定高纯铜中痕量硫,对高纯铜生产工艺控制具有重要意义。用标准样品校准仪器相对灵敏度因子,实现了直流辉光放电质谱法(DC-GDMS)对高纯铜中痕量硫的测定。对放电参数进行了优化,确定放电电流为2.0 mA,放电电压为1 200 V,预溅射时间为20 min。实验表明,在优化的条件下,仪器分辨率可达3 000以上,以32S为待测同位素,可以避开硫各同位素附近离子团的干扰。通过对仪器稳定性进行统计,内部重复性相对标准偏差RSD%为4.3%,外部重复性相对标准偏差RSD%为6.8%。在优化后的工作条件下,方法检出限可达0.005 μg/g。用t检验法评价方法准确性,两个高纯铜标样的t值计算结果分别为0.98、1.13,在95%置信概率下,查单侧t检验表为1.94,t计算均小于t0.05,6,说明检测结果与标示值无显著差异。与高频燃烧红外吸收法测定值进行比较,通过双侧t检验,t计算小于t0.05,12,说明两种方法测定结果无显著差异。按照实验方法对低硫样品3#、4#进行测定,结果的相对标准偏差(RSD)小于20%。不确定度评定结果表明,标准样品不确定度是影响测定结果准确性的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号