首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many states rely upon the Pennsylvania 1957 Gas Well Pillar Study to evaluate the coal barrier surrounding gas wells. The study included 77 gas well failure cases that occurred in the Pittsburgh and Freeport coal seams over a 25-year span. At the time, coal was mined using the room-and-pillar mining method with full or partial pillar recovery, and square or rectangle pillars surrounding the gas wells were left to protect the wells. The study provided guidelines for pillar sizes under different overburden depths up to213 m(700 ft). The 1957 study has also been used to determine gas well pillar sizes in longwall mines since longwall mining began in the 1970 s. The original study was developed for room-and-pillar mining and could be applied to gas wells in longwall chain pillars under shallow cover. However, under deep cover, severe deformations in gas wells have occurred in longwall chain pillars. Presently, with a better understanding of coal pillar mechanics, new insight into subsidence movements induced by retreat mining, and advances in numerical modeling, it has become both critically important and feasible to evaluate the adequacy of the 1957 study for longwall gas well pillars. In this paper, the data from the 1957 study is analyzed from a new perspective by considering various factors, including overburden depth, failure location, failure time, pillar safety factor(SF), and floor pressure. The pillar SF and floor pressure are calculated by considering abutment pressure induced by full pillar recovery. A statistical analysis is performed to find correlations between various factors and helps identify the most significant factors for the stability of gas wells influenced by retreat mining. Through analyzing the data from the 1957 study, the guidelines for gas well pillars in the 1957 study are evaluated for their adequacy for roomand-pillar mining and their applicability to longwall mining. Numerical modeling is used to model the stability of gas wells by quantifying the mining-induced stresses in gas well casings. Results of this study indicate that the guidelines in the 1957 study may be appropriate for pillars protecting conventional gas wells in both room-and-pillar mining and longwall mining under overburden depths up to 213 m(700 ft),but may not be sufficient for protective pillars under deep cover. The current evaluation of the 1957 study provides not only insights about potential gas well failures caused by retreat mining but also implications for what critical considerations should be taken into account to protect gas wells in longwall mining.  相似文献   

2.
The proliferation of unconventional gas well development in the Northern Appalachian coalfields has raised a number of mine safety concerns. Unconventional wells, which extract gas from deep shale formations, are characterized by gas volumes and pressures that are significantly higher than those observed at many conventional wells. The gas is composed largely of methane as well as other hydrocarbons. Hundreds of planned and actively producing wells penetrate protective coal pillars or barriers within active mine boundaries, including chain pillars located between longwall panels. Gas released from a well damaged by mining-induced ground movements could pose a risk to miners by flowing into the mine atmosphere. The mining-induced ground movements that may cause well damage include conventional subsidence, non-conventional subsidence(e.g. bedding plane slip), pillar failure, and floor instability. This paper describes the known risk factors for each of the four failure mechanisms. It includes a framework that can guide the risk assessment process when mining takes place near gas or oil wells.  相似文献   

3.
This paper presents the results of a comprehensive study conducted by CONSOL Energy, Marcellus Shale Coalition, and Pennsylvania Coal Association to evaluate the effects of longwall-induced subsurface deformations on the mechanical integrity of shale gas wells drilled over a longwall abutment pillar.The primary objective is to demonstrate that a properly constructed gas well in a standard longwall abutment pillar can maintain mechanical integrity during and after mining operations. A study site was selected over a southwestern Pennsylvania coal mine, which extracts 457-m-wide longwall faces under about 183 m of cover. Four test wells and four monitoring wells were drilled and installed over a 38-m by84-m centers abutment pillar. In addition to the test wells and monitoring wells, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457-m-wide longwall panels on the south and north sides of the abutment pillar were mined by. To evaluate the resulting coal protection casing profile and lateral displacement, three separate 60-arm caliper surveys were conducted. This research represents a very important step and initiative to utilize the knowledge and science obtained from mining research to improve miner and public safety as well as the safety and health of the oil and gas industries.  相似文献   

4.
Effective surrounding rock control is a prerequisite for realizing safe mining in underground coal mines.In the past three decades, longwall top-coal caving mining(LTCC) and single pass large height longwall mining(SPLL) found expanded usage in extracting thick coal seams in China. The two mining methods lead to large void space left behind the working face, which increases the difficulty in ground control.Longwall face failure is a common problem in both LTCC and SPLL mining. Such failure is conventionally attributed to low strength and high fracture intensity of the coal seam. However, the stiffness of main components included in the surrounding rock system also greatly influences longwall face stability.Correspondingly, surrounding rock system is developed for LTCC and SPLL faces in this paper. The conditions for simultaneous balance of roof structure and longwall face are put forward by taking the stiffness of coal seam, roof strata and hydraulic support into account. The safety factor of the longwall face is defined as the ratio between the ultimate bearing capacity and actual load imposed on the coal wall.The influences provided by coal strength, coal stiffness, roof stiffness, and hydraulic support stiffness,as well as the movement of roof structure are analyzed. Finally, the key elements dominating longwall face stability are identified for improving surrounding rock control effectiveness in LTCC and SPLL faces.  相似文献   

5.
Rockburst represents a very dangerous phenomenon in deep underground mining in unfavourable conditions such as great depth, high horizontal stress, proximity of important tectonic structures, and unmined pillars. The case study describes a recorded heavy rockburst in the Czech part of the Upper Silesian Coal Basin, which occurred during longwall mining near the protective pillar. The artificial dividing of geological blocks and creation of mining protective pillars(shaft pillars, crosscut pillars etc.) is a dangerous task in light of rockbursts occurring mainly due to overstressing of remaining pillars. A simple model of this situation is presented. Natural and mining conditions are analysed and presented in detail as well as registered seismicity during longwall mining in the area. Recorded rockbursts in the area of interest are described and their causes discussed. Many rockbursts near protective pillars were recorded in this mining region. Methodical instructions for rockburst prevention in proximity of protective pillars as well as for gates driving were devised based on the evaluation of rockburst causes. The paper presents these principles for prevention.  相似文献   

6.
Over 600 longwall panels have been mined in Pennsylvania in the last 50 years. Of those 600 panels, 25 panels undermined interstates highways. Despite this quantity of panels, much is still unknown regarded the detailed effects of undermining highways. The Gateway Mine, the Emerald Mine, and the Cumberland Mine undermined I-79 with 17 panels in 1982–1989 and in 2003–2008, respectively; Mine 84 undermined I-70 with 4 panels in 1987–2000. Through the examination of the panels that undermined I-70 and I-79, it is possible to determine which factors have most impacted the highway alignments. In some locations, the highway intersects with panels at angles ranging from 45° to 80°; and at the others, it runs between two panels, which simulates the effect of gateroads on the subsidence. The panel width to overburden ratio varies between 0.64 and 1.7, meaning that the interstates were influenced by both subcritical and supercritical subsidence basins. The face advance rates and overburden depths also vary between the panels. Unfortunately, specific information detailing highway impacts associated with unique characteristics of the subsidence basins are limited. In this paper, using the profile function model and influence function model within the surface deformation prediction system(SDPS), the effects of overburden,panel size, and orientation of the road on the highway can be indirectly assessed.  相似文献   

7.
Most, if not all longwall gob areas accumulate explosive methane-air mixtures that pose a deadly hazard to miners. Numerous mine explosions have originated from explosive gas zones(EGZs) in the longwall gob. Since 2010, researchers at the Colorado School of Mines(CSM) have studied EGZ formation in longwall gobs under two long-term research projects funded by the National Institute for Occupational Safety and Health. Researchers used computational fluid dynamics along with in-mine measurements. For the first time, they demonstrated that EGZs form along the fringe areas between the methane-rich atmospheres and the fresh air ventilated areas along the working face and present an explosion and fire hazard to mine workers. In this study, researchers found that, for progressively sealed gobs, a targeted injection of nitrogen from the headgate and tailgate, along with a back return ventilation arrangement, will create a dynamic seal of nitrogen that effectively separates the methane zone from the face air and eliminates the EGZs to prevent explosions. Using this form of nitrogen injection to create dynamic seals should be a consideration for all longwall operators.  相似文献   

8.
Gob ventilation boreholes (GVBs) are widely used for degasification in U.S. longwall coal mines. Depending on geological conditions, 30–50% of methane can be recovered from longwall gob using GVBs. A NIOSH funded research at the Colorado School of Mines confirmed that GVBs can efficiently reduce methane at the face. However, GVBs can also draw some fresh air from the face and create explosive gas zones (EGZs). Explosive gas mixtures may be formed in gob areas due to the increased ingress of oxygen from GVBs. It is critical to identify the locations for GVBs for maximizing extraction of methane and minimizing hazards of explosion. This study analyzes the effect of operating parameters and design of GVB on methane extraction, EGZs formation, and face and tailgate methane concentrations. Methane extraction, formation of EGZs, and concentration of methane in working areas are significantly impacted by various factors. These factors include the distance of work face and tailgate from GVBs, diameter of GVBs, vacuum pressure of wellhead, GVB distance from the roof of the coal seam, and number of operating GVBs in a panel. Computational fluid dynamics (CFD) evaluations suggest optimal design and operating parameters of GVBs that can contribute to maximum benefits with minimum risks.  相似文献   

9.
10.
Differential Interferometric Synthetic Aperture Radar(DIn SAR), a satellite-based remote sensing technique, has application for monitoring subsidence with high resolution over short periods. DIn SAR uses radar images to measure centimeter-level surface displacements. In the images, ground resolution can be relatively high, with each data point(pixel) representing the average displacement over an area of several square meters. The image data are acquired regularly which allows subsidence to be monitored sequentially over short periods; imaging periods typically range from weeks to months. Monitoring subsidence over short periods with high spatial resolution has potential to provide insight into the dynamics of subsidence and into relationships between mine advance and subsidence. In this study, for three longwall mines in the western United States, initial subsidence occurring at the start of longwall advance is quantified over short periods(12–72 days). C-band interferometric wide swath Synthetic Aperture Radar(SAR) images from the Sentinel satellites are used to quantify the subsidence. Overall, the data show initial development of subsidence, expansion of the subsidence trough, and the advance of subsidence in the direction of mining.  相似文献   

11.
This paper reviews the development of U.S. longwall mining from an unknown to became the world standard in the past five decades with emphasis on automation. Large scale longwall face equipment were imported from Germany and United Kingdom to increase production in the 1970 s and great effort was made to improve them to suit U.S. conditions, rather than domestic market. Automation began with the development of electrohydraulic shields in 1984 and continue to present. Introduction of first generation semi-automated longwall system occurred in 1995 and step-to-step improvement continues to present following the development of sensor technology and internet of things(IOT). Since then, emphasis on new development has been concentrated on the improvement of equipment reliability, miner's health and safety as well as production, including dust control techniques, proximity sensor, anti-collision and remote control. Automation is classified into two categories: automation of individual face equipment and automation of longwall system. The automation development of longwall system is divided into three stages: shearer-initiated-shield-advance(SISA), semi-automated longwall system, and remote control shearer.  相似文献   

12.
While the fully-mechanized longwall mining technology was employed in a shallow seam under a room mining goaf and overlained by thin bedrock and thick loose sands, the roadway pillars in the abandoned room mining goaf were in a stress-concentrated state, which may cause abnormal roof weighting, violent ground pressure behaviours, even roof fall and hydraulic support crushed(HSC) accidents. In this case,longwall mining safety and efficiency were seriously challenged. Based on the HSC accidents occurred during the longwall mining of 3-1-2 seam, which locates under the intersection zone of roadway pillars in the room mining goaf of 3-1-1 seam, this paper employed ground rock mechanics to analyse the overlying strata structure movement rules and presented the main influence factors and determination methods for the hydraulic support working resistance. The FLAC3 D software was used to simulate the overlying strata stress and plastic zone distribution characteristics. Field observation was implemented to contrastively analyse the hydraulic support working resistance distribution rules under the roadway pillars in strike direction, normal room mining goaf, roadway pillars in dip direction and intersection zone of roadway pillars. The results indicate that the key strata break along with rotations and reactions of the coal pillars deliver a larger concentrated load to the hydraulic support under intersection zone of roadway pillars than other conditions. The ‘‘overburden strata-key strata-roadway pillars-immediate roof" integrated load has exceeded the yield load that leads to HSC accidents. Findings in HSC mechanism provide a reasonable basis for shallow seam mining, and have important significance for the implementation of safe and efficient mining.  相似文献   

13.
The environmental risks associated with casing deformation in unconventional(shale) gas wells positioned in abutment pillars of longwall mines is a concern to many in the mining and gas well industry.With the recent interest in shale exploration and the proximity to longwall mining in Southwestern Pennsylvania, the risk to mine workers could be catastrophic as fractures in surrounding strata create pathways for transport of leaked gases. Hence, this research by the National Institute for Occupational Safety and Health(NIOSH) presents an analytical model of the gas transport through fractures in a low permeable stratum. The derived equations are used to conduct parametric studies of specific transport conditions to understand the influence of stratum geology, fracture lengths, and the leaked gas properties on subsurface transport. The results indicated that the prediction that the subsurface gas flux decreases with an increase in fracture length is specifically for a non-gassy stratum. The sub-transport trend could be significantly impacted by the stratum gas generation rate within specific fracture lengths, which emphasized the importance of the stratum geology. These findings provide new insights for improved understanding of subsurface gas transport to ensure mine safety.  相似文献   

14.
Coal mine ventilation is an extremely complicated system that can be affected by many factors. Gas ventilation pressure is one of important factors that can disturb the stabilization of airflow in airways.The formation and characteristics of gas ventilation pressure were further elaborated, and numerical simulations were conducted to verify the role of gas ventilation pressure in the stability of airway airflow.Then a case study of airflow stagnation accident that occurred in the Tangshan Coal Mine was performed.The results show that under the condition of upward ventilation, the direction of gas ventilation pressure in the branch is the same to that of the main fan, airflow of the branches beside the branch may be reversed. The greater the gas ventilation pressure is, the more obvious the reversion is. Moreover, reversion sequence of paralleled branches is related to the airflow velocity and length of the branch. Under the condition of downward ventilation, the airflow in the branch filled with gas may be reversed. Methane in downward ventilation is hard to discharge; therefore, accumulation in downward ventilation is more harmful than that in upward ventilation.  相似文献   

15.
Coal mine longwall gateroads are subject to changing loading conditions induced by the advancing longwall face. The ground response and support requirements are closely related to the magnitude and orientation of the stress changes, as well as the local geology. This paper presents the monitoring results of gateroad response and support performance at two longwall mines at a 180-m and 600-m depth of cover.At the first mine, a three-entry gateroad layout was used. The second mine used a four-entry, yieldabutment-yield gateroad pillar system. Local ground deformation and support response were monitored at both sites. The monitoring period started during the development stage and continued during first panel retreat and up to second panel retreat. The two data sets were used to compare the response of the entries in two very different geotechnical settings and different gateroad layouts. The monitoring results were used to validate numerical models that simulate the loading conditions and entry response for these widely differing conditions. The validated models were used to compare the load path and ground response at the two mines. This paper demonstrates the potential for numerical models to assist mine engineers in optimizing longwall layouts and gateroad support systems.  相似文献   

16.
This paper presents the results of a 2017 study conducted by the National Institute for Occupational Safety and Health(NIOSH), Pittsburgh Mining Research Division(PMRD), to evaluate the effects of longwall-induced subsurface deformations within a longwall abutment pillar under deep cover. The 2017 study was conducted in a southwestern Pennsylvania coal mine, which extracts 457 m-wide longwall panels under 361 m of cover. One 198 m-deep, in-place inclinometer monitoring well was drilled and installed over a 45 m by 84 m center abutment pillar. In addition to the monitoring well, surface subsidence measurements and underground coal pillar pressure measurements were conducted as the 457 m-wide longwall panel on the south side of the abutment pillar was being mined. Prior to the first longwall excavation, a number of simulations using FLAC3D~(TM) were conducted to estimate surface subsidence, increases in underground coal pillar pressure, and subsurface horizontal displacements in the monitoring well. Comparisons of the pre-mining FLAC3D simulation results and the surface, subsurface,and underground instrumentation results show that the measured in-place inclinometer casing deformations are in reasonable agreement with those predicted by the 3D finite difference models. The measured surface subsidence and pillar pressure are in excellent agreement with those predicted by the 3D models.Results from this 2017 research clearly indicate that, under deep cover, the measured horizontal displacements within the abutment pillar are approximately one order of magnitude smaller than those measured in a 2014 study under medium cover.  相似文献   

17.
Longwall abutment loads are influenced by several factors, including depth of cover, pillar sizes, panel dimensions, geological setting, mining height, proximity to gob, intersection type, and size of the gob.How does proximity to the gob affect pillar loading and entry condition? Does the gob influence depend on whether the abutment load is a forward, side, or rear loading? Do non-typical bleeder entry systems follow the traditional front and side abutment loading and extent concepts? If not, will an improved understanding of the combined abutment extent warrant a change in pillar design or standing support in bleeder entries? This paper details observations made in the non-typical bleeder entries of a moderate depth longwall panel—specifically, data collected from borehole pressure cells and roof extensometers,observations of the conditions of the entries, and numerical modeling of the bleeder entries during longwall extraction. The primary focus was on the extent and magnitude of the abutment loading experienced due to the extraction of the longwall panels. Due to the layout of the longwall panels and bleeder entries, the borehole pressure cells(BPCs) and roof extensometers did not show much change due to the advancing of the first longwall. However, they did show a noticeable increase due to the second longwall advancement, with a maximum of about 4 MPa of pressure increase and 5 mm of roof deformation. The observations of the conditions showed little to no change from before the first longwall panel extraction began to when the second longwall panel had been advanced more than 915 m. Localized pillar spalling was observed on the corners of the pillars closest to the longwall gob as well as an increase in water in the entries. In addition to the observations and instrumentation, numerical modeling was performed to validate modeling procedures against the monitoring results and evaluate the bleeder design.ITASCA Consulting Group's FLAC3 D numerical modeling software was used to evaluate the bleeder entries. The results of the models indicated only a minor increase in load during the extraction of the longwall panels. These models showed a much greater increase in stress due to the development of the gateroad and bleeder entries--about 80% development and 20% longwall extraction. The FLAC3 D model showed very good correlation between modeled and expected gateroad loading during panel extraction. The front and side abutment extent modeled was very similar to observations from this and previous panels.  相似文献   

18.
Underground gassy longwall mining goafs may suffer potential gas explosions during the mining process because of the irregularity of gas emissions in the goaf and poor ventilation of the working face, which are risks difficult to control. In this work, the 3235 working face of the Xutuan Colliery in Suzhou City, China, was researched as a case study. The effects of air quantity and gas emission on the three-dimensional distribution of oxygen and methane concentration in the longwall goaf were studied. Based on the revised Coward’s triangle and linear coupling region formula, the coupled methane-oxygen explosive hazard zones (CEHZs) were drawn. Furthermore, a simple practical index was proposed to quantitatively determine the gas explosion risk in the longwall goaf. The results showed that the CEHZs mainly focus on the intake side where the risk of gas explosion is greatest. The CEHZ is reduced with increasing air quantity. Moreover, the higher the gas emission, the larger the CEHZ, which moves towards the intake side at low goaf heights and shifts to the deeper parts of the goaf at high heights. In addition, the risk of gas explosion is reduced as air quantities increase, but when gas emissions increase to a higher level (greater than 50 m3/min), the volume of the CEHZ does not decrease with the increase of air quantity, and the risk of gas explosion no longer shows a linear downward trend. This study is of significance as it seeks to reduce gas explosion accidents and improve mine production safety.  相似文献   

19.
A comprehensive monitoring program was conducted to measure the rock mass displacements, support response, and stress changes at a longwall tailgate entry in West Virginia.Monitoring was initiated a few days after development of the gateroad entries and continued during passage of the longwall panels on both sides of the entry.Monitoring included overcore stress measurements of the initial stress within the rock mass, changes in cable bolt loading, standing support pressure, roof deformation, rib deformation,stress changes in the coal pillar, and changes in the full three-dimensional stress tensor within the rock mass at six locations around the monitoring site.During the passage of the first longwall, stress measurements in the rock and coal detected minor changes in loading while minor changes were detected in roof deformation.As a result of the relatively favorable stress and geological conditions, the support systems did not experience severe loading or rock deformation until the second panel approached within 10–15 m of the instrumented locations.After reaching the peak loading at about 50–75 mm of roof sag, the cable bolts started to unload, and load was transferred to the standing supports.The standing support system was able to maintain an adequate opening inby the shields to provide ventilation to the first crosscut inby the face, as designed.The results were used to calibrate modeled cable bolt response to field data, and to validate numerical modeling procedures that have been developed to evaluate entry support systems.It is concluded that the support system was more than adequate to control the roof of the tailgate up to the longwall face location.The monitoring results have provided valuable data for the development and validation of support design strategies for longwall tailgate entries.  相似文献   

20.
A new numerical model is presented to simulate fracture initiation and propagation in geological structures. This model is based on the recent amalgamation of established failure and fracture mechanics theory, which has been implemented to the finite difference FLAC code as a constitutive FISH user-defined-model. Validation of the model has been studied on the basis of comparing the transitional failure modes in rock. It is shown that the model is capable of accurately simulating fracture distributions over entire brittle to ductile rock phases. The application of the model during longwall retreat simulation highlighted several caving characteristics relevant to varying geological condition. The distribution and behaviour of modelled fractures were both realistic and shown to provide an enhanced post failure analysis to geological structures in FLAC. Moreover, the model introduces new potential insight towards the failure analysis of more complicated problems. This is best suited towards improving safety and efficiency in mines through the prediction of various key fractures and caving characteristics of geological structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号