首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
采用基于密度泛函理论的平面波赝势方法,计算了不同压强下立方结构双钙钛矿氧化物Ba2YNbO6的弹性性质与电子结构.计算结果表明:平衡状态下Ba2YNbO6为延展性材料,且延展性随压强的增大而提高;弹性常数,弹性模量和泊松比均随压强的增大近线性增大;Ba2YNbO6为直接带隙半导体,平衡状态下带隙宽度为2.55 eV,且带隙值随压强的增大而减小;费米面附近的能带主要由O 2p,Nb 4d和Y 4d层的电子态密度确定,增大压强使态密度峰有偏离费米面的趋势,并且态密度展宽,峰发生劈裂.  相似文献   

2.
本文采用基于密度泛函理论的第一性原理方法研究不同翘曲度下锗烯的电子结构及光学性质,分析翘曲度对电子结构及光学性质的影响。采用六种不同的近似方法对锗烯的几何结构进行优化,得到最稳定的结构体系,在此基础上选取不同的翘曲度,并对翘曲度的稳定性进行论证得到三种较稳定的翘曲结构。通过翘曲度的调节打开锗烯的带隙,并且通过调节翘曲度实现锗烯带隙在间接带隙和直接带隙之间的转化,通过分析态密度解释了能带结构的调控机制,以及翘曲度对锗烯光学性质的影响。研究表明翘曲度能够有效地调控锗烯的电子结构和光学性质,提高光电子利用效率。  相似文献   

3.
自2009年以来,有机-无机杂化钙钛矿作为光吸材料的新型太阳能电池受到了广泛关注.在基于密度泛函理论(DFT)的第一性原理计算的基础上,利用VASP软件包,通过改变钙钛矿MAPbBr3(CH3NH3PbBr3)的晶格常数进行加压模拟计算,系统的研究了压强作用下钙钛矿材料的电子结构的变化.压强作用下带隙值变化的物理机制可以通过MA阳离子和PbBr6正八面体无机笼之间的氢键作用进行半定量的描述.在压强作用下,Br原子通过靠近氨末端的H原子而响应,会引起了PbBr6八面体发生不同程度的倾斜和扭曲,导致体系的晶格对称性发生破坏,使得Pb、Br原子之间的电荷密度函数发生变化,进而影响钙钛矿MAPbBr3在不同压强下的电子结构以及光学性质的变化.  相似文献   

4.
基于密度泛函理论,计算了Y以及In掺杂BaSnO3的稳定性、电子结构和光学性质。结果表明Y以及In掺杂BaSnO3体系结构稳定,且均为p型透明导电材料,在可见光区透过率大于85%,且Y以及In掺杂BaSnO3体系的导电性明显得到了改善。  相似文献   

5.
在超软赝势密度泛函理论基础上计算分析了TiO2基(100)晶面低维材料的形成、电子结构和光学性质.结果表明,TiO2基(100)晶面低维材料的形成焓大于TiO2块体材料的形成焓,其稳定性比TiO2块体材料低.TiO2基(100)晶面低维材料带隙为2.760 eV,高于其体材料,其带隙为间接型.其价带顶和导带底主要分别由O p电子和Ti d电子形成,并且Ti的d电子和O的p电子在-2.5 eV处有局域作用.TiO2基(100)晶面低维材料电子局域化程度增大,Ti和O之间的离子性结合程度增强.TiO2基(100)晶面低维材料在140.8 nm处有最强的反射峰,其反射系数达23.9;,其在34.5 nm处有强的选择性吸收,并且在33.3 nm和138.9 nm处有最强的能量损失.  相似文献   

6.
基于密度泛函理论(DFT)的第一性原理计算方法,研究了单硫空位缺陷扶手椅型二硫化钼纳米带(AMoS2NR)的结构与电子性质.结果表明,优化的AMoS2NR纳米带边缘上Mo原子较S原子向纳米带内侧收缩;引入空位缺陷后,边缘上Mo原子向纳米带内侧收缩加剧,稳定性降低;空位缺陷纳米带相比完整纳米带,带隙减小;同时,空位缺陷处原子部分态密度降低,相应的能带线分布稀疏.  相似文献   

7.
采用密度泛函理论研究了Ce、N共掺杂锐钛矿相TiO2的电子结构、态密度和光学特性.计算结果表明,不同位置Ce、N共掺杂对TiO2的杂质形成能、带隙和光学性质是有影响的.共掺杂带隙比单掺杂TiO2的更窄,导致电子从杂质能级激发到导带的概率增大,这会提高共掺杂TiO2的光量子效率.Ce、N共掺杂后TiO2吸收带边红移至可见光区的更远处,光学吸收系数比单掺杂时更强,这主要是由Ce、N共掺杂的协同效应引起的.带边位置的计算结果表明掺杂TiO2的强氧化还原能力得到保持.因此,Ce、N共掺后TiO2在可见光区具有良好的光催化性能.  相似文献   

8.
在赝势法密度泛函理论的基础上,系统研究了Na掺杂对TiO2基材料电子结构、载流子迁移和光吸收性质的影响.纯的TiO2基晶态材料呈现宽的直接带隙,其带隙宽度达2.438 eV,Na掺杂降低了TiO2基晶态材料的带隙至1.976 eV.纯的TiO2电子主要形成五个能带,而Na掺杂TiO2主要形成七个能带.TiO2材料的载流子迁移率较Na掺杂TiO2材料高,而Na掺杂TiO2材料载流子有效质量较TiO2的高.Na掺杂在TiO2材料价带中引入空穴和新的能级.Na掺杂大大提高了TiO2材料的载流子浓度,Ti中的p态电子,Na中的p态电子和O中的p态电子在导电过程中起着关键作用.Na掺杂TiO2材料的低能量光吸收限降低.  相似文献   

9.
SiGeSn三元合金由于具有较二元合金更大的晶格和能带性质调控范围,是当前用于制作硅基激光器的热点材料。为全面且精确地研究其晶格结构、电子结构和光学性质,本文采用基于密度泛函理论(DFT)的第一性原理方法,并结合准随机近似和杂化泛函带隙修正,首先研究SiGeSn晶格常数及其弯曲系数的变化规律,并给出了解决GeSn二元晶格失配和压应变问题的方案。其次比较研究了SiGeSn与GeSn合金的能带结构,并通过态密度计算分析了Si的引入对合金带隙变化的物理机制。最后比较研究了SiGeSn与GeSn合金的介电函数谱、吸收系数、消光系数、反射率、折射率和发射率等光学性质。结果表明,SiGeSn晶格常数弯曲系数的变化与合金电负性差值的变化规律一致,Si-p电子态是SiGeSn合金带隙变化的最主要贡献。相比于同Sn浓度的GeSn合金,SiGeSn能保持直接带隙特征,且其带隙值和光吸收波长呈现更宽的变化范围。因此在拓宽硅基高效光源和光电探测器应用波段方面,SiGeSn相较于GeSn合金具有更大的应用潜力和优势。  相似文献   

10.
周祎  张昌文  王培吉 《人工晶体学报》2013,42(11):2432-2438
采用基于密度泛函理论的线性缀加平面波(FLAPW)方法,研究了3d族过渡金属元素Fe对Ⅲ-Ⅴ族半导体InP的电子结构和光学性质的调控机理,并对其能带结构和电荷密度分布进行了分析.结果表明,InP为直接带隙半导体,其价带主要由P-3s和3p态构成,而导带则由In-5s电子态构成.当Fe元素替代In原子后,由于Fe和P原子的轨道杂化作用,InP带隙中出现杂质态,Fe-3d态产生自旋极化效应.随着Fe的掺杂浓度增大,Fe-P原子之间轨道杂化作用明显增加,费米能级逐渐进入价带,这导致了材料的电子跃迁几率提高,光学吸收边明显增强,跃迁峰发生红移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号