首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At As-contaminated sites, where the ingestion of soil by children is typically the critical human-health exposure pathway, information on the bioavailability of soil-bound As is often limited. The influence of various soil physical and chemical properties (iron and manganese oxides, pH, cation exchange capacity, total inorganic and organic carbon, and particle size) on As(III) adsorption, sequestration, bioaccessibility (as a surrogate for oral bioavailability), and oxidation was investigated in 36 well-characterized soils by use of a physiologically based extraction test (PBET). These results were compared to an earlier published study with As(V) on the same set of soils. The properties of the soils were able to explain >80% of the variability in the adsorption and sequestration (as measured by the reduction in bioaccessibility over time) of As(III) in these soils. The initial bioaccessibility of As(III) was significantly higher than the initial bioaccessibility of As(V) on the same set of soils. However, over a 6-month period of aerobic aging, a significant portion of the solid-phase As(III) on these soils was oxidized to As(V), decreasing its bioaccessibility markedly. A multivariable linear regression model previously developed to predict the steady-state bioaccessibility of As(V) in soils was able to predict the bioaccessibility in As(III)-spiked soils within a root-mean-square error (RMSE) of 16.8%. Generally, soils having a higher iron oxide content and lower soil pH exhibited lower bioaccessibility. This model was also able to predict the in vivo bioavailability of As in contaminated soils previously used in an independent juvenile swine dosing trial within an RMSE of 15.5%, providing a greatly improved yet conservative estimate of bioavailability relative to the typical default assumption of 100%. However, the model was not able to accurately predict the bioavailability of As in a different set of contaminated soils previously used in an independent Cebus monkey dosing trial, consistently overpredicting the bioavailability, resulting in an RMSE of 42.7%. This model can be used to provide an initial estimate of As bioavailability in soil to aid in screening sites and justifying expensive site-specific animal feeding studies. Further, as the model is based on major soil properties, the resulting estimates are valid as long as the major soil properties do not change, thus providing some confidence in the long-term applicability of the estimates.  相似文献   

2.
Highly specialized personnel and high cost are typically required for in vivo risk assessment of arsenic (As) exposure to humans in As-contaminated soils. Arsenic bioaccessibility in soils, as determined with the aid of in vitro tests, is quite variable, and its magnitude depends upon unidentified soil properties. Use of soil chemical properties is a common practice for construction of As(V) sorption and bioaccessibility models with relative success. We propose a novel As(V) bioaccessibility model, which was tested on 17 soils. The model includes only two parameters characterizing surface properties of soils that are readily determined from N2- and CO2-based specific surface areas (SSAs), and total organic carbon (OC) content. We found that N2 and CO2 molecules act as As(V) "surrogates", probing easily accessible and relatively difficult to access soil porosity, respectively. Three interrelated linear models were constructed using two terms (CO2/N2-based SSAs and OC) that were significant (p <0.001) in explaining 51 and 95% of the variability observed in As(V) sorption and bioaccessibility, respectively. The proposed models successfully predicted bioaccessible As concentrations for 4 out of the 5 soils that were not included in the bioaccessibility models, reaching RMSE values of < or =10%.  相似文献   

3.
Soil ingestion can be a major exposure route for humans to many immobile soil contaminants. Exposure to soil contaminants can be overestimated if oral bioavailability is not taken into account. Several in vitro digestion models simulating the human gastrointestinal tract have been developed to assess mobilization of contaminants from soil during digestion, i.e., bioaccessibility. Bioaccessibility is a crucial step in controlling the oral bioavailability for soil contaminants. To what extent in vitro determination of bioaccessibility is method dependent has, until now, not been studied. This paper describes a multi-laboratory comparison and evaluation of five in vitro digestion models. Their experimental design and the results of a round robin evaluation of three soils, each contaminated with arsenic, cadmium, and lead, are presented and discussed. A wide range of bioaccessibility values were found for the three soils: for As 6-95%, 1-19%, and 10-59%; for Cd 7-92%, 5-92%, and 6-99%; and for Pb 4-91%, 1-56%, and 3-90%. Bioaccessibility in many cases is less than 50%, indicating that a reduction of bioavailability can have implications for health risk assessment. Although the experimental designs of the different digestion systems are distinct, the main differences in test results of bioaccessibility can be explained on the basis of the applied gastric pH. High values are typically observed for a simple gastric method, which measures bioaccessibility in the gastric compartment at low pHs of 1.5. Other methods that also apply a low gastric pH, and include intestinal conditions, produce lower bioaccessibility values. The lowest bioaccessibility values are observed for a gastrointestinal method which employs a high gastric pH of 4.0.  相似文献   

4.
Lead (Pb) bioaccessibility was assessed using 2 in vitro methods in 12 Pb-contaminated soils and compared to relative Pb bioavailability using an in vivo mouse model. In vitro Pb bioaccessibility, determined using the intestinal phase of the Solubility Bioaccessibility Research Consortium (SBRC) assay, strongly correlated with in vivo relative Pb bioavailability (R(2) = 0.88) following adjustment of Pb dissolution in the intestinal phase with the solubility of Pb acetate at pH 6.5 (i.e., relative Pb bioaccessibility). A strong correlation (R(2) = 0.78) was also observed for the relative bioaccessibility leaching procedure (RBALP), although the method overpredicted in vivo relative Pb bioavailability for soils where values were <40%. Statistical analysis of fit results from X-ray absorption near-edge structure (XANES) data for selected soils (n = 3) showed that Pb was strongly associated with Fe oxyhydroxide minerals or the soil organic fraction prior to in vitro analysis. XANES analysis of Pb speciation during the in vitro procedure demonstrated that Pb associated with Fe minerals and the organic fraction was predominantly solubilized in the gastric phase. However, during the intestinal phase of the in vitro procedure, Pb was strongly associated with formation of ferrihydrite which precipitated due to the pH (6.5) of the SBRC intestinal phase. Soils where Fe dissolution was limited had markedly higher concentrations of Pb in solution and hence exhibited greater relative bioavailability in the mouse model. This data suggests that coexistence of Fe in the intestinal phase plays an important role in reducing Pb bioaccessibility and relative bioavailability.  相似文献   

5.
Because of the potentially high arsenic concentrations found in soils immediately adjacent to chromated copper arsenate (CCA)-treated wood structures and utility poles, CCA-contaminated soil ingestion may be a significant exposure route to arsenic for children. Therefore, a strong need exists to provide accurate data on oral relative bioavailability (RBA) of arsenic (in vivo or in vitro) in field-collected CCA-contaminated soils. The objectives of this study were (1) to assess arsenic bioaccessibility in contaminated soils collected near in-service CCA-treated utility poles, (2) to determine the influence of soil properties and arsenic fractionation on arsenic bioaccessibility, and (3) to estimate an average daily arsenic intake from incidental soil ingestion. Arsenic bioaccessibility (in vitro gastrointestinal (IVG) method) was determined on surface soil samples collected immediately adjacent to 12 CCA-treated utility poles after 18 months of service. Bioaccessible arsenic was also determined in 3 certified reference materials. Total arsenic concentrations in soils (<300 microm) varied from 37 +/- 2 to 251 +/- 12 mg/kg, irrespective of soil organic matter contentwith the major soil-bound arsenic species being As(V). Arsenic bioaccessibility ranged between 25.0 +/- 2.7 and 66.3 +/- 2.3% (mean value 40.7 +/- 14.9%). The mean value was in agreement with the in vivo arsenic RBA reported by Casteel et al. (2003) in soil near CCA-treated utility poles. Bioaccessible arsenic was positively correlated with total organic carbon content (r2 = 0.36, p < 0.05) and with water-soluble arsenic (2 = 0.51, p < 0.01), and was negatively correlated with clay content (r2 = 0.43, p < 0.05). Using conservative exposure parameters, the mean daily arsenic intake from incidental ingestion of contaminated soil near CCA-treated utility poles was 0.18 +/- 0.09 microg As kg(-1) d(-1). This arsenic intake appeared negligible compared to the daily intake of inorganic arsenic from water and food ingestion for children.  相似文献   

6.
The risk posed from incidental ingestion to humans of arsenic-contaminated soil may depend on sorption of arsenate (As(V)) to oxide surfaces in soil. Arsenate sorbed to ferrihydrite, a model soil mineral, was used to simulate possible effects on ingestion of soil contaminated with As-(V) sorbed to Fe oxide surfaces. Arsenate sorbed to ferrihydrite was placed in a simulated gastrointestinal tract (in vitro) to ascertain the bioaccessibility of As(V) and changes in As(V) surface speciation caused by the gastrointestinal system. The speciation of As was determined using extended X-ray absorption fine structure (EXAFS) analysis and X-ray absorption near-edge spectroscopy (XANES). The As(V) adsorption maximum was found to be 93 mmol kg(-1). The bioaccessible As(V) ranged from 0 to 5%, and surface speciation was determined to be binuclear bidentate with no changes in speciation observed post in vitro. Arsenate concentration in the intestine was not constant and varied from 0.001 to 0.53 mM for the 177 mmol kg(-1) As(V) treated sample. These results suggest that the bioaccessibility of As(V) is related to the As(V) concentration, the As(V) adsorption maximum, and that multiple measurements of dissolved As(V) in the intestinal phase may be needed to calculate the bioaccessibility of As(V) adsorbed to ferrihydrite.  相似文献   

7.
The relative bioavailability of arsenic, antimony, cadmium, and lead for the ingestion pathway was measured in 16 soils contaminated by either smelting or mining activities using a juvenile swine model. The soils contained 18 to 25,000 mg kg(-1) As, 18 to 60,000 mg kg(-1) Sb, 20 to 184 mg kg(-1) Cd, and 1460 to 40,214 mg kg(-1) Pb. The bioavailability in the soils was measured in kidney, liver, bone, and urine relative to soluble salts of the four elements. The variety of soil types, the total concentrations of the elements, and the range of bioavailabilities found were considered to be suitable for calibrating the in vitro Unified BARGE bioaccessibility method. The bioaccessibility test has been developed by the BioAccessibility Research Group of Europe (BARGE) and is known as the Unified BARGE Method (UBM). The study looked at four end points from the in vivo measurements and two compartments in the in vitro study ("stomach" and "stomach and intestine"). Using benchmark criteria for assessing the "fitness for purpose" of the UBM bioaccessibility data to act as an analogue for bioavailability in risk assessment, the study shows that the UBM met criteria on repeatability (median relative standard deviation value <10%) and the regression statistics (slope 0.8 to 1.2 and r-square > 0.6) for As, Cd, and Pb. The data suggest a small bias in the UBM relative bioaccessibility of As and Pb compared to the relative bioavailability measurements of 3% and 5% respectively. Sb did not meet the criteria due to the small range of bioaccessibility values found in the samples.  相似文献   

8.
There is a strong interest in developing an in vitro arsenic (As) model that satisfactorily estimates the variability in in vivo relative oral bioavailability (RBA) measurements. Several in vitro tests have been developed, but none is universally accepted due to their limited success in predicting soil As RBA. A suite of amorphous and crystalline solid As phases were chosen, utilizing a worst-case scenario (WCS) that simulated fasting children's gastric solution chemistry. The objectives of this study were to (i) determine the effects of residence time, pH, and solid-to-solution ratio on As bioaccessibility and speciation in the in vitro gastric test; (ii) provide the fundamental basis for an optimized in vitro model constrained by the WCS; and (iii) validate the optimized in vitro test with the in vivo RBA obtained with BALB/c mice. The gastric pH was the only significant (p < 0.05) factor influencing solid As bioaccessibility. Bioaccessible As retained the oxidation state after its release from the solid into the gastric solution. The optimized in vitro model adequately predicted RBA values for a suite of solid As phases typically encountered in soils, with the exception of aluminum-based solids. This study is an excellent starting point for developing an in vitro test applicable to different As-contaminated soils.  相似文献   

9.
In this study, DDTr (DDTr = DDT + DDD + DDE) relative bioavailability in historically contaminated soils (n = 7) was assessed using an in vivo mouse model. Soils or reference materials were administered to mice daily over a 7 day exposure period with bioavailability determined using DDTr accumulation in adipose, kidney, or liver tissues. Depending on the target tissue used for its calculation, some variability in DDTr relative bioavailability was observed; however, it did not exceed 25% (range 2-25%). When DDTr bioaccessibility was determined using organic physiologically based extraction test (Org-PBET), unified BARGE method (UBM), and fed organic estimation human simulation test (FOREhST) in vitro assays, bioaccessibility was less than 4% irrespective of the assay utilized and the concentration of DDTr in the contaminated soil. Pearson correlations demonstrate a poor relationship between DDTr relative bioavailability and DDTr bioaccessibility (0.47, 0.38, and 0.28, respectively), illustrating the limitations of the static in vitro methods for predicting the dynamic processes of the mammalian digestive system for this hydrophobic organic contaminant.  相似文献   

10.
探究海带和紫菜中6种必需元素(Cu、Fe、Mn、Zn、Co和V)与5种有害元素(As、Cd、Pb、Al和Sr)的生物可给性及胃、肠消化过程中As、Cd等有害元素的形态转化,分析加工过程对样品中元素含量、形态及生物可给性的影响,结果表明:紫菜对除Sr外10种元素的富集能力均显著高于海带,经加工,海带和紫菜中6种人体必需微...  相似文献   

11.
The oxidation states and host phases of Sb and As in soil samples of mine tailing (Ichinokawa mine, Ehime, Japan) and in laboratory soil-water systems were determined by X-ray absorption fine structure (XAFS) spectroscopy. HPLC-ICP-MS was used for speciation of Sb and As in soil water. In the Ichinokawa soil water system, Sb was present exclusively as the oxidized form, Sb(V), over a wide redox range (from Eh = 360 to -140 mV, pH 8), while As was present as a mixture of As(III) and As(V). This finding was confirmed in the laboratory experiments. These results suggest that Sb(V) is a very stable form in the environment and that Sb is oxidized at more negative Eh than As. Combining the results of Fe and Mn XAFS analyses and a positive correlation among Sb, As, and Fe abundances in the soil, the host phases of Sb and As in soil were Fe(III) hydroxide. XAFS analyses of Sb and As are also consistent with this finding. Under reducing conditions, the concentration of As in the soil water increased whereas that of Sb decreased in both the Ichinokawa and laboratory systems. This suggests that this contrasting behavior is controlled mainly by the different redox properties of Sb and As.  相似文献   

12.
Adequate assessment of human health risk of uranium contamination at hazardous waste sites, which is an important step in determining the cleanup strategy, is based on bioavailability data. Bioavailability of uranium from contaminated soil has not been properly determined yet. Bioaccessibility is an in vitro conservative estimate of bioavailability and is thus frequently used for site-specific risk assessment. Bioaccessibility of uranium was measured in 33 soil samples from the Port Hope area in Ontario, Canada, by the physiologically based extraction test (PBET). Higher bioaccessibility values in the gastric plus intestinal phase, 48.4% ± 16.8%, than in the gastric phase, 20.8% ± 11.7%, are very probably the result of more efficient extraction of uranium from soil by intestinal fluid rich in carbonate ions. The observed variability of measured bioaccessibility values is discussed in light of the results of scanning electron microscope examination of the soil samples. Uranium bioaccessibility values in both gastric (acidic) and gastric plus intestinal (neutral) phases are higher in soil samples with smaller uranium-bearing particles and lower in samples where the uranium-bearing particles are larger. We postulate that the most important reason for variability of measured bioaccessibility values in Port Hope soil samples may be the difference in particle size of uranium-bearing particles.  相似文献   

13.
Hydrous ferric oxide (HFO) is an X-ray amorphous compound with a high affinity for anions under strongly or mildly acidic conditions. Because of the usually small particle size of HFO, the adsorption capacity is high and adsorption may significantly impact the thermodynamic properties of such materials. Here we show that adsorption of phosphate and arsenate stabilizes HFO by experimental determination of enthalpies of formation (by acid-solution calorimetry) and estimates of standard entropies for six phosphate- or arsenate-enriched HFO samples. At pH values lower than ~5, the phosphate-doped HFO is not only less soluble than ferrihydrite (anion-free HFO) but also crystalline FeOOH polymorphs feroxyhyte and lepidocrocite. The arsenate-doped HFO is also stabilized with respect to the ferrihydrite. Phosphate availability in soils can be controlled by the phosphate-enriched HFO which is many orders of magnitude less soluble than apatite or crystalline Fe(III) phosphates, for example strengite (FePO(4)·2H(2)O). Thermodynamic dissolution models for scorodite (FeAsO(4)·2H(2)O) and As-enriched HFO show that under mildly acidic or circumneutral conditions, scorodite dissolves, As-HFO precipitates, and a substantial amount of As(V) is released into the aqueous solution (at pH 7, log m(As) ~ -2.5). The data presented in this paper can be used to model the equilibrium concentration of Fe(III), P(V), or As(V) in soil solutions or in natural or anthropogenic sediments polluted by arsenic.  相似文献   

14.
The content and the bioaccessibility of Se, Cu, Zn, Mn, and Fe were determined in unaged and aged meat (14days) from the Psoas major (PM), Gluteus medius (GM) and Longissimus dorsi (LD) muscles of Hereford (H) and Braford breed (B) steers fed pasture. Furthermore, the content of heme-Fe was determined in the same muscles. The H had a lower content of Cu and a higher content of Fe. Also, H had more heme-Fe than B. The bioaccessibility in unaged meat for Se, Cu, Zn, Mn and Fe ranged between 75 and 91%, 30 and 45%, 40 and 68%, 55 and 95%, and 60 and 70%, respectively. After aging, the bioaccessibility for the same minerals ranged between 58 and 80%, 30 and 48%, 40 and 58%, 75 and 95%, and 59 and 70%, respectively. Aging affected negatively the Se content and its bioaccessibility, in the two breeds. Also, the heme-Fe content was negatively affected by aging in all muscles and breeds.  相似文献   

15.
We investigated the effects of Shewanella putrefaciens cells and extracellular polymeric substances on the sorption of As(III) and As(V) to goethite, ferrihydrite, and hematite at pH 7.0. Adsorption of As(III) and As(V) at solution concentrations between 0.001 and 20 μM decreased by 10 to 45% in the presence of 0.3 g L(-1) EPS, with As(III) being affected more strongly than As(V). Also, inactivated Shewanella cells induced desorption of As(V) from the Fe(III)-(hydr)oxide mineral surfaces. ATR-FTIR studies of ternary As(V)-Shewanella-hematite systems indicated As(V) desorption concurrent with attachment of bacterial cells at the hematite surface, and showed evidence of inner-sphere coordination of bacterial phosphate and carboxylate groups at hematite surface sites. Competition between As(V) and bacterial phosphate and carboxylate groups for Fe(III)-(oxyhydr)oxide surface sites is proposed as an important factor leading to increased solubility of As(V). The results from this study have implications for the solubility of As(V) in the soil rhizosphere and in geochemical systems undergoing microbially mediated reduction and indicate that the presence of sorbed oxyanions may affect Fe-reduction and biofilm development at mineral surfaces.  相似文献   

16.
A number of in vitro assays are available for the determination of arsenic (As) bioaccessibility and prediction of As relative bioavailability (RBA) to quantify exposure for site-specific risk assessment. These data are usually considered in isolation; however, meta analysis may provide predictive capabilities for source-specific As bioaccessibility and RBA. The objectives of this study were to predict As RBA using previously published in vivo/in vitro correlations and to assess the influence of As sources on As RBA independent of geographical location. Data representing 351 soils (classified based on As source) and 514 independent bioaccessibility values were retrieved from the literature for comparison. Arsenic RBA was predicted using published in vivo/in vitro regression models, and 90th and 95th percentiles were determined for each As source classification and in vitro methodology. Differences in predicted mean As RBA were observed among soils contaminated from different As sources and within source materials when various in vitro methodologies were utilized. However, when in vitro data were standardized by transforming SBRC intestinal, IVG, and PBET data to SBRC gastric phase values (through linear regression models), predicted As RBA values for As sources followed the order CCA posts ≥ herbicide/pesticide > mining/smelting > gossan soils with 95th percentiles for predicted As RBA of 78.0, 78.4, 67.0, and 23.7%, respectively.  相似文献   

17.
Formation of ternary complexes between arsenic (As) oxyanions and ferric iron (Fe) complexes of humic substances (HS) is often hypothesized to represent a major mechanism for As-HS interactions under oxic conditions. However, direct evidence for this potentially important binding mechanism is still lacking. To investigate the molecular-scale interaction between arsenate, As(V), and HS in the presence of Fe(III), we reacted fulvic and humic acids with Fe(III) (1 wt %) and equilibrated the Fe(III)-HS complexes formed with As(V) at pH 7 (molar Fe/As ~10). The local (<5 ?) coordination environments of As and Fe were subsequently studied by means of X-ray absorption spectroscopy. Our results show that 4.5-12.5 μmol As(V)/g HS (25-70% of total As) was associated with Fe(III). At least 70% of this As pool was bound to Fe(III)-HS complexes via inner-sphere complexation. Results obtained from shell fits of As K-edge extended X-ray absorption fine structure (EXAFS) spectra were consistent with a monodentate binuclear ((2)C) and monodentate mononuclear ((1)V) complex stabilized by H-bonds (R(As-Fe) = 3.30 ?). The analysis of Fe K-edge EXAFS spectra revealed that Fe in Fe(III)-HS complexes was predominantly present as oligomeric Fe(III) clusters at neutral pH. Shell-fit results complied with a structural motif in which three corner-sharing Fe(O,OH)(6) octahedra linked by a single μ(3)-O bridge form a planar Fe trimer. In these complexes, the average Fe-C and Fe-Fe bond distances were 2.95 ? and 3.47 ?, respectively. Our study provides the first spectroscopic evidence for ternary complex formation between As(V) and Fe(III)-HS complexes, suggesting that this binding mechanism is of fundamental importance for the cycling of oxyanions such as As(V) in organic-rich, oxic soils and sediments.  相似文献   

18.
毕节地区植烟土壤有效态微量元素含量评价   总被引:1,自引:0,他引:1  
对毕节地区298个植烟土壤样品的有效态微量元素Cu、Zn、Fe、Mn、B和Mo的含量及丰缺特性进行了分析,以期为毕节烟区平衡施肥及提高烟叶品质提供依据。试验结果表明,毕节地区植烟土壤中有效态Cu、Fe、Mn含量极丰富,Zn含量丰富,有效硼和有效钼的含量比较缺乏,超过1/2的土壤缺硼,超过2/5的土壤缺钼。土壤中有效态Zn、Fe和Mn的含量与pH呈显著性负相关,有效钼含量与pH呈显著性正相关。土壤中有效Fe、Zn、Mn和B的含量与有机质含量呈显著性正相关。综上所述,毕节烟区要适当补充B肥和Mo肥,对Cu、Zn、Fe和Mn等元素要通过控制施入量或土壤改良来降低其有效含量,防止土壤重金属污染。  相似文献   

19.
The distribution of different iron (Fe) species in soils, sediments, and surface waters has a large influence on the mobility and availability of Fe, other nutrients, and potentially toxic trace elements. However, the knowledge about the specific forms of Fe that occurs in these systems is limited, especially regarding associations of Fe with natural organic matter (NOM). In this study, extended X-ray absorption fine structure (EXAFS) spectroscopy was used to characterize Fe(III) in organic soils (pH 4.6-6.0) with varying natural Fe content. The EXAFS data were subjected to wavelet transform analysis, to facilitate the identification of the nature of backscattering atoms, and to conventional EXAFS data fitting. The collective results showed the existence of two pools of iron: mononuclear Fe(III)-NOM complexes and precipitated Fe(III) (hydr)oxides. In the soil with lowest pH (4.6) and Fe content mononuclear organic complexes were the completely dominating fraction whereas in soils with higher pH and Fe content increasing amounts of Fe (hydr)oxides were detected. These results are of environmental importance, as the different iron pools most likely have markedly different reactivities.  相似文献   

20.
Reduction of arsenate As(V) and As-bearing Fe (hydr)- oxides have been proposed as dominant pathways of As release within soils and aquifers. Here we examine As elution from columns loaded with ferrihydrite-coated sand presorbed with As(V) or As(III) at circumneutral pH upon Fe and/or As reduction; biotic stimulated reduction is then compared to abiotic elution. Columns were inoculated with Shewanella putrefaciens strain CN-32 or Sulfurospirillum barnesii strain SES-3, organisms capable of As (V) and Fe (III) reduction, or Bacillus benzoevorans strain HT-1, an organism capable of As(V) but not Fe(III) reduction. On the basis of equal surface coverages, As(III) elution from abiotic columns exceeded As(V) elution by a factor of 2; thus, As(III) is more readily released from ferrihydrite under the imposed reaction conditions. Biologically mediated Asreduction induced by B. benzoevorans enhances the release of total As relative to As (V) under abiotic conditions. However, under Fe reducing conditions invoked by either S. barnesii or S. putrefaciens, approximately three times more As (V or III) was retained within column solids relative to the abiotic experiments, despite appreciable decreases in surface area due to biotransformation of solid phases. Enhanced As sequestration upon ferrihydrite reduction is consistent with adsorption or incorporation of As into biotransformed solids. Our observations indicate that As retention and release from Fe (hydr)oxide(s) is controlled by complex pathways of Fe biotransformation and that reductive dissolution of As-bearing ferrihydrite can promote As sequestration rather than desorption under conditions examined here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号