首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper bounds to transport capacity of wireless networks   总被引:2,自引:0,他引:2  
We derive upper bounds on the transport capacity of wireless networks. The bounds obtained are solely dependent on the geographic locations and power constraints of the nodes. As a result of this derivation, we are able to conclude the optimality, in the sense of scaling of transport capacity with the number of nodes, of a multihop communication strategy for a class of network topologies.  相似文献   

2.
The transport capacity of wireless networks over fading channels   总被引:6,自引:0,他引:6  
We consider networks consisting of nodes with radios, and without any wired infrastructure, thus necessitating all communication to take place only over the shared wireless medium. The main focus of this paper is on the effect of fading in such wireless networks. We examine the attenuation regime where either the medium is absorptive, a situation which generally prevails, or the path loss exponent is greater than 3. We study the transport capacity, defined as the supremum over the set of feasible rate vectors of the distance weighted sum of rates. We consider two assumption sets. Under the first assumption set, which essentially requires only a mild time average type of bound on the fading process, we show that the transport capacity can grow no faster than O(n), where n denotes the number of nodes, even when the channel state information (CSI) is available noncausally at both the transmitters and the receivers. This assumption includes common models of stationary ergodic channels; constant, frequency-selective channels; flat, rapidly varying channels; and flat slowly varying channels. In the second assumption set, which essentially features an independence, time average of expectation, and nonzeroness condition on the fading process, we constructively show how to achieve transport capacity of /spl Omega/(n) even when the CSI is unknown to both the transmitters and the receivers, provided that every node has an appropriately nearby node. This assumption set includes common models of independent and identically distributed (i.i.d.) channels; constant, flat channels; and constant, frequency-selective channels. The transport capacity is achieved by nodes communicating only with neighbors, and using only point-to-point coding. The thrust of these results is that the multihop strategy, toward which much protocol development activity is currently targeted, is appropriate for fading environments. The low attenuation regime is open.  相似文献   

3.
Given a quality-of-service constraint, a wireless network has to sacrifice its capacity in order to support an increase in mobility. In other words, the network needs to convert some of its capacity into mobility. We develop an analytical model to evaluate the efficiency of the mobility/capacity conversion processes of several wireless networks. One practical implication of our results is that a network, if designed correctly, should have a free convertibility between the two.  相似文献   

4.
We propose a class of novel energy‐efficient multi‐cost routing algorithms for wireless mesh networks, and evaluate their performance. In multi‐cost routing, a vector of cost parameters is assigned to each network link, from which the cost vectors of candidate paths are calculated using appropriate operators. In the end these parameters are combined in various optimization functions, corresponding to different routing algorithms, for selecting the optimal path. We evaluate the performance of the proposed energy‐aware multi‐cost routing algorithms under two models. In the network evacuation model, the network starts with a number of packets that have to be transmitted and an amount of energy per node, and the objective is to serve the packets in the smallest number of steps, or serve as many packets as possible before the energy is depleted. In the dynamic one‐to‐one communication model, new data packets are generated continuously and nodes are capable of recharging their energy periodically, over an infinite time horizon, and we are interested in the maximum achievable steady‐state throughput, the packet delay, and the energy consumption. Our results show that energy‐aware multi‐cost routing increases the lifetime of the network and achieves better overall network performance than other approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
I. Introduction Wireless ad hoc network regarded as a risingnetwork model has been discussed widely. Thestudy of the capacity of wireless ad hoc networkshas received significant attention recently. Guptaand Kumar in Ref.[1] proposed a model for studyingthe capacity of fixed ad hoc networks, where nodesare randomly located but are stationary. They madea somewhat pessimistic conclusion that the trafficrate per Source-to-Destination (S-D) pair will go tozero as the number of nodes per unit are…  相似文献   

6.
On capacity of random wireless networks with physical-layer network coding   总被引:1,自引:0,他引:1  
Throughput capacity of a random wireless network has been studied extensively in the literature. Most existing studies were based on the assumption that each transmission involves only one transmitter in order to avoid interference. However, recent studies on physical-layer network coding (PLNC) have shown that such an assumption can be relaxed to improve throughput performance of a wireless network. In PLNC, signals from different senders can be transmitted to the same receiver in the same channel simultaneously. In this paper, we investigate the impact of PLNC on throughput capacity of a random wireless network. Our study reveals that, although PLNC scheme does not change the scaling law, it can improve throughput capacity by a fixed factor. Specifically, for a one-dimensional network, we observe that PLNC can eliminate the effect of interference in some scenarios. A tighter capacity bound is derived for a two-dimensional network. In addition, we also show achievable lower bounds for random wireless networks with network coding and PLNC.  相似文献   

7.
8.
Stability and capacity of regular wireless networks   总被引:3,自引:0,他引:3  
We study the stability and capacity problems in regular wireless networks. In the first part of the paper, we provide a general approach to characterizing the capacity region of arbitrary networks, find an outer bound to the capacity region in terms of the transport capacity, and discuss connections between the capacity formulation and the stability of node buffers. In the second part of the paper, we obtain closed-form expressions for the capacity of Manhattan (two-dimensional grid) and ring networks (circular array of nodes). We also find the optimal (i.e., capacity-achieving) medium access and routing policies. Our objective in analyzing regular networks is to provide insights and design guidelines for general networks. The knowledge of the exact capacity enables us to quantify the loss incurred by suboptimal protocols such as slotted ALOHA medium access and random-walk-based routing. Optimal connectivity and the effects of link fading on network capacity are also investigated.  相似文献   

9.
In the Code Division Multiple Access (CDMA) framework, collisions that can occur in wireless networks are eliminated by assigning orthogonal codes to stations, a problem equivalent to that of coloring graphs associated to the physical network. In this paper we present new upper and lower bounds for two versions of the problem (hidden and primary collision avoidance – HPCA – or hidden collision avoidance only – HCA). In particular, optimal assignments for special topologies and heuristics for general topologies are proposed. The schemes show better average results with respect to existing alternatives. Furthermore, the gaps between the upper bound given by the heuristic solution, the lower bound obtained from the maximumclique problem, and the optimal solution obtained by branch and bound are investigated in the different settings. A scaling law is then proposed to explain the relations between the number of codes needed in Euclidean networks with different station densities and connection distances. The substantial difference between the two versions HPCA and HCA of the problem is investigated by studying the probabilistic distribution of connections as a function of the distance, and the asymptotic size of the maximum cliques.  相似文献   

10.
Wireless Networks - With the constant increase of throughput demands, maximizing the wireless network capacity has always been a crucial issue. Network densification becomes one of the adopted...  相似文献   

11.
The goal of this paper is to establish which practical routing schemes for wireless networks are most suitable for power-limited and bandwidth-limited communication regimes. We regard channel state information (CSI) at the receiver and point-to-point capacity-achieving codes for the additive white Gaussian noise (AWGN) channel as practical features, interference cancellation (IC) as possible, but less practical, and synchronous cooperation (CSI at the transmitters) as impractical. We consider a communication network with a single source node, a single destination node, and N-1 intermediate nodes placed equidistantly on a line between them. We analyze the minimum total transmit power needed to achieve a desired end-to-end rate for several schemes and demonstrate that multihop communication with spatial reuse performs very well in the power-limited regime, even without IC. However, within a class of schemes not performing IC, single-hop transmission (directly from source to destination) is more suitable for the bandwidth-limited regime, especially when higher spectral efficiencies are required. At such higher spectral efficiencies, the gap between single-hop and multihop can be closed by employing IC, and we present a scheme based upon backward decoding that can remove all interference from the multihop system with an arbitrarily small rate loss. This new scheme is also used to demonstrate that rates of O(logN) are achievable over linear wireless networks even without synchronous cooperation.  相似文献   

12.
In this paper we develop analytical closed form expression for the capacity of a wireless ad hoc network. First, for the general case when nodes can adapt their communication rates to the link quality, a proper formulation for the total network capacity is presented based on the cumulative distribution function (CDF) of the signal to interference power ratio (SIR). Then, a closed form expression for this CDF is analytically derived. This closed form is further studied by fitting it to a normal distribution. Afterwards, the capacity of the network is investigated. By examining the effect of the outage threshold, it is shown that in order to obtain a higher capacity, one may use simple non-adaptive transceivers with higher threshold on the received SIR. These results are obtained by conducting analytical and simulation studies.  相似文献   

13.
This article puts forward a new solution to the bound of the outage probability and transmission capacity of Ad-hoc networks. For the proofs of the upper and lower bounds are too complex, a much easier way is introduced to get the same results, and by using Taylor series, the asymptotic bound is derived. By comparing with the simulation results, we found that the asymptotic bound is sufficient accurate when the network parameters are selected properly, and is tighter than the upper and lower bounds.  相似文献   

14.
This article introduces a metric for performance evaluation of medium access schemes in wireless ad hoc networks known as local capacity. Although deriving the end-to-end capacity of wireless ad hoc networks is a difficult problem, the local capacity framework allows us to quantify the average information rate received by a receiver node randomly located in the network. In this article, the basic network model and analytical tools are first discussed and applied to a simple network to derive the local capacity of various medium access schemes. Our goal is to identify the most optimal scheme and also to see how does it compare with more practical medium access schemes. We analyzed grid pattern schemes where simultaneous transmitters are positioned in a regular grid pattern, ALOHA schemes where simultaneous transmitters are dispatched according to a uniform Poisson distribution and exclusion schemes where simultaneous transmitters are dispatched according to an exclusion rule such as node coloring and carrier sense schemes. Our analysis shows that local capacity is optimal when simultaneous transmitters are positioned in a grid pattern based on equilateral triangles and our results show that this optimal local capacity is at most double the local capacity of ALOHA based scheme. Our results also show that node coloring and carrier sense schemes approach the optimal local capacity by an almost negligible difference. At the end, we also discuss the shortcomings in our model as well as future research directions.  相似文献   

15.
16.
A survey of transport protocols for wireless sensor networks   总被引:4,自引:0,他引:4  
In this article we present a survey of transport protocols for wireless sensor networks (WSNs). We first highlight several unique aspects of WSNs, and describe the basic design criteria and challenges of transport protocols, including energy-efficiency, quality of service, reliability, and congestion control. We then provide a summary and comparison of existing transport protocols for WSNs. Finally, we discuss several open research problems.  相似文献   

17.
Heterogeneous networking is envisioned as a key solution for accommodating the traffic surge resulting from resource demanding applications such as video streaming. In this paper, the diversity in cost, coverage, and resource availability in heterogeneous systems is exploited to minimize the streaming session cost in three-tier integrated systems. A sub-optimal streaming decision engine is developed to overcome the complexity of the original problem whose solution contradicts with both the limited processing capabilities of end-user equipment and short handoff delay requirements. Our results show that the developed framework achieves significant monetary cost savings in comparison to typical greedy streaming behavior. Additionally, our solution can be easily tuned to compromise the tradeoff between monetary, signaling and quality cost components.  相似文献   

18.
The throughput capacity of arbitrary wireless networks under the physical Signal to Interference Plus Noise Ratio (SINR) model has received much attention in recent years. In this paper, we investigate the question of how much the worst-case performance of uniform and non-uniform power assignments differ under constraints such as a bound on the area where nodes are distributed or restrictions on the maximum power available. We determine the maximum factor by which a non-uniform power assignment can outperform the uniform case in the SINR model. More precisely, we prove that in one-dimensional settings the capacity of a non-uniform assignment exceeds a uniform assignment by at most a factor of \(O(\log L_{\max })\) when the length of the network is \(L_{\max }\). In two-dimensional settings, the uniform assignment is at most a factor of \(O(\log P_{\max })\) worse than the non-uniform assignment if the maximum power is \(P_{\max }\). We provide algorithms that reach this capacity in both cases. These bounds are tight in the sense that previous work gave examples of networks where the lack of power control causes a performance loss in the order of these factors. To complement our theoretical results and to evaluate our algorithms with concrete input networks, we carry out simulations on random wireless networks. The results demonstrate that the link sets generated by the algorithms contain around 20–35 % of all links. As a consequence, engineers and researchers may prefer the uniform model due to its simplicity if this degree of performance deterioration is acceptable.  相似文献   

19.
Mobility increases the capacity of ad hoc wireless networks   总被引:16,自引:0,他引:16  
The capacity of ad hoc wireless networks is constrained by the mutual interference of concurrent transmissions between nodes. We study a model of an ad hoc network where n nodes communicate in random source-destination pairs. These nodes are assumed to be mobile. We examine the per-session throughput for applications with loose delay constraints, such that the topology changes over the time-scale of packet delivery. Under this assumption, the per-user throughput can increase dramatically when nodes are mobile rather than fixed. This improvement can be achieved by exploiting a form of multiuser diversity via packet relaying.  相似文献   

20.
Wireless sensor networks (WSN) are event‐based systems that rely on the collective effort of several sensor nodes. Reliable event detection at the sink is based on collective information provided by the sensor nodes and not on any individual sensor data. Hence, conventional end‐to‐end reliability definitions and solutions are inapplicable in the WSN regime and would only lead to a waste of scarce sensor resources. Moreover, the reliability objective of WSN must be achieved within a certain real‐time delay bound posed by the application. Therefore, the WSN paradigm necessitates a collective delay‐constrained event‐to‐sink reliability notion rather than the traditional end‐to‐end reliability approaches. To the best of our knowledge, there is no transport protocol solution which addresses both reliability and real‐time delay bound requirements of WSN simultaneously. In this paper, the delay aware reliable transport (DART) protocol is presented for WSN. The objective of the DART protocol is to timely and reliably transport event features from the sensor field to the sink with minimum energy consumption. In this regard, the DART protocol simultaneously addresses congestion control and timely event transport reliability objectives in WSN. In addition to its efficient congestion detection and control algorithms, it incorporates the time critical event first (TCEF) scheduling mechanism to meet the application‐specific delay bounds at the sink node. Importantly, the algorithms of the DART protocol mainly run on resource rich sink node, with minimal functionality required at resource constrained sensor nodes. Furthermore, the DART protocol can accommodate multiple concurrent event occurrences in a wireless sensor field. Performance evaluation via simulation experiments show that the DART protocol achieves high performance in terms of real‐time communication requirements, reliable event detection and energy consumption in WSN. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号