首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过尿素共沉淀法从钕铁硼废料中回收稀土及Fe元素,并采用X射线衍射(XRD)分析其相组成,用扫描电镜(SEM)分析其微观结构,获得的产物由纳米尺寸的稀土或稀土与铁的混合氧化物以及微米尺寸的Fe_2O_3组成。研究了pH值与温度T对尿素水解及回收产物的影响。结果表明,随pH值从1增大至6,稀土元素回收率总体呈先升高后降低的趋势,Fe元素回收率呈持续升高趋势。4种稀土元素回收率随pH值的变化趋势略有差异。随温度升高,4种稀土元素回收率均先升高后降低,总回收率在温度为60~70℃时稳定在大于90%的水平。其中最佳沉淀条件为:pH=3,T=65℃。该条件下稀土元素和Fe元素回收率分别为94.92%和100.49%,总回收率为98.81%,产物纯度为98.86%。与现有共沉淀工艺相比,尿素共沉淀工艺可通过控制温度来控制反应速度,获得高的回收率及纯度。该方法流程短、操作简单、节能环保,是一种具有实用价值的钕铁硼废料回收工艺。  相似文献   

2.
研究了从钕铁硼废料中回收稀土氧化物和氧化钴的工艺流程,试验确定了酸分解,草酸沉淀,除铁等杂质的工艺条件,该工艺能有效地除去铁,钙等杂质,试验得到的氧化钴符合GB6518-86纯氧化钴粉Y1类产品要求,钴直收率在82%以上,所得稀土氧化物,其总含量为97%以上,回收率95%以上,达到了综合回收利用的目的。  相似文献   

3.
钕铁硼废料中钕、镝及钴的回收   总被引:7,自引:0,他引:7  
许涛  李敏  张春新 《稀土》2004,25(2):31-34
研究了钕铁硼废料中钕、镝、钴的回收与分离,根据废料中所含元素的化学性质,选择了硫酸溶解、复盐沉淀稀土、碱转化、盐酸溶解、复盐沉淀铁及萃取分离等手段,成功的将钕铁硼废料中有价值的元素进行了提取,得到了纯度较高的氧化钕、氧化镝及氧化钴。  相似文献   

4.
镝铁合金中稀土总量的测定采用草酸盐重量法,以盐酸溶解,用过氧化氢氧化二价铁,在pH1.5~2.0条件下用草酸沉淀稀土分离铁,沉淀经高温灼烧后生成稀土氧化物,称量测定稀土总量。  相似文献   

5.
赵小山  冯江传 《稀有金属》2003,27(1):167-169
通过稀土草酸盐溶液度与粒度的关系。探索控制稀土氧化物粒度的途径。实验测定了几种稀土草酸盐在草酸沉淀母液中的溶解度,并对不同草酸沉淀条件下获得的单一稀土氧化物的粒度进行比较。得到了其氧化物粒度与草酸盐溶解度之间的关系,通过对Y2O3,Eu2O3,Gd2O3,Dy2O3的粒度数据进行分析对照,提出了控制其粒度的途径。  相似文献   

6.
硫酸焙烧分解包头混合稀土精矿添加铁泥的研究   总被引:1,自引:0,他引:1  
在硫酸焙烧分解包头混合稀土精矿工艺中,利用处理钕铁硼废料所产生铁泥替代铁粉,通过焙烧分解、P204转型得到氯化稀土溶液,并与原工艺得到的的溶液进行对比,结果表明,使用铁泥和使用铁粉达到了相同的工艺效果,铁泥中的稀土得到了很好的回收。  相似文献   

7.
《稀土》2016,(5)
采用单一碱熔试剂(Na_2O_2)活化分解荧光粉废料,经水浸、碱分离、盐酸提取后,氨水分离、脱硅和草酸盐沉淀稀土,重量法测定废弃稀土荧光粉中稀土氧化物的总量。研究进行了加标回收率和精密度实验,回收率在99.60%~100.40%,被分析元素的测定范围为:10.00%~70.00%,相对标准偏差RSD1.00%。  相似文献   

8.
《有色冶炼》2014,(1):83-84
2014001稀土冶炼分离废水联合处理方法 稀土冶炼分离废水联合处理方法,包括以下步骤:以酸性草酸沉淀废水调节皂化废水酸度,使废水中的大部分草酸和稀土以沉淀形式析出,在超声波的辅助下使乳化的有机相破乳,经澄清分相,使有机相和稀土草酸盐得到回收;  相似文献   

9.
稀土草酸盐沉淀过程中颗粒大小的控制   总被引:7,自引:1,他引:6  
高玮  古宏晨 《稀土》2000,21(1):11-13
稀土草酸盐沉淀法是制备稀土氧化物的主要方法。本文对硝酸体系中的稀土沉淀过程进行了研究,推导出草酸盐、草酸铵盐、草酸钾盐和草酸钠盐的平均粒径与过饱和度之间的关系。  相似文献   

10.
探索了从烧结钕铁硼磁体的废料中回收Nd2O3的工艺流程.根据废料中所含元素的化学性质,分别采用了硫酸复盐沉淀法及草酸盐二次沉淀法来回收Nd2O3,并比较了不同回收方法对杂质含量和回收率的影响,得出了简单可行、效益良好的工艺条件.试验结果表明,采用硫酸复盐沉淀法,稀土元素沉淀比较完全,所得产品纯度较高,且Nd2O3的回收率可达82%以上.  相似文献   

11.
《稀土》1976,(2)
稀土总量的测定 (一)草酸盐重量法方法要点试样以硝酸和氢氟酸分解,经硫酸冒烟驱氟,并经氨水分离后,在酸性(PH为2)溶液中,使稀土生成草酸盐沉淀,車酸稀土灼烧成稀土氧化物称重。试剂及仪器 1.氢氟酸:40%。 2.硝酸:比重1.42。  相似文献   

12.
中国每年会产生很多钕铁硼废料,这些废料中含有大量的稀土等有价元素。对钕铁硼废料进行资源化回收利用有助于改善中国稀土资源短缺、环境污染和资源浪费的问题。钕铁硼废料的绿色回收前景广阔,因此有必要对钕铁硼废料的资源化回收利用做更加全面和系统的研究。文中对一些传统钕铁硼废料回收工艺和钕铁硼废料回收的新方法进行了综述,并总结了这些方法的特点,以期在高效回收钕铁硼废料工艺的研究上提供指导和帮助。   相似文献   

13.
废旧镍氢电池负极板中稀土的回收   总被引:1,自引:0,他引:1  
采用湿法冶金工艺,回收废旧镍氢电池负极板中的稀土(RE)元素,用硫酸浸出负极板中的有价金属,分析硫酸浓度、浸出温度、浸出时间等因素对稀土元素浸出率的影响,在硫酸浓度为2.0 mol/L、浸出温度为60℃、浸出时间120 min下,RE的浸出率为92.31%.采用磷酸二异辛酯(P204)为萃取剂萃取浸出液中的稀土,当P204在煤油中的比率为20%时,萃取率为92.86%.用硫酸钠沉淀溶液中的稀土,浸出液中稀土元素回收率可达98.78%.采用XRD和SEM分析表征回收的稀土氧化物的物相和表面形貌,结果表明,回收产物为铈系稀土氧化物,为立方晶系,呈面心立方结构,表面形貌为棱柱形.  相似文献   

14.
《中国有色冶金》2014,(1):83-84
正2014001稀土冶炼分离废水联合处理方法稀土冶炼分离废水联合处理方法,包括以下步骤:以酸性草酸沉淀废水调节皂化废水酸度,使废水中的大部分草酸和稀土以沉淀形式析出,在超声波的辅助下使乳化的有机相破乳,经澄清分相,使有机相和稀土草酸盐得到回收;分离出油相和固相的水相继续用石灰浆中和至pH值10~11,经澄清过滤,使重金属Pb、Cr及大部分残留的有机萃取剂及溶剂  相似文献   

15.
准确测定镧镍合金中稀土总量,对于有效控制镧镍合金的生产技术和产品质量具有重要意义。因镧镍合金中镍含量在50%(质量分数,下同)以上,其他共存元素中钴约10%、锰约5%,故很难通过单一分离方式彻底分离共存元素。实验依次采用氟化分离、氨水分离、草酸沉淀方式分离共存元素,进而对镧镍合金中稀土总量的测定进行探讨。试样经盐酸和硝酸溶解,采用氢氟酸、氨水、草酸沉淀稀土,逐一分离去除干扰元素,在pH值为1.8~2.0条件下,稀土元素沉淀为草酸稀土,950℃灼烧草酸稀土生成稀土氧化物(不含氧化钍),再以镧对氧化镧换算成金属稀土总量。盐酸-硝酸能够完全平稳溶解试样,且测定结果(30.42%)与参考值(30.43%)相符;采用氟化分离、氨水分离、草酸沉淀的分离方式很好地去除了镍、钴、锰、铝、铜、铁等非稀土杂质;按照实验方法测定镧镍合金样品中稀土总量,结果的相对标准偏差(RSD,n=11)均小于0.50%;加标回收率为 99%~101%。按照实验方法选取两家实验室对镧镍合金中稀土总量进行测定数据比对,结果基本一致并与参考值相符。  相似文献   

16.
准确测定镧镍合金中稀土总量,对于有效控制镧镍合金的生产技术和产品质量具有重要意义。因镧镍合金中镍含量在50%(质量分数,下同)以上,其他共存元素中钴约10%、锰约5%,故很难通过单一分离方式彻底分离共存元素。实验依次采用氟化分离、氨水分离、草酸沉淀方式分离共存元素,进而对镧镍合金中稀土总量的测定进行探讨。试样经盐酸和硝酸溶解,采用氢氟酸、氨水、草酸沉淀稀土,逐一分离去除干扰元素,在pH值为1.8~2.0条件下,稀土元素沉淀为草酸稀土,950℃灼烧草酸稀土生成稀土氧化物(不含氧化钍),再以镧对氧化镧换算成金属稀土总量。盐酸-硝酸能够完全平稳溶解试样,且测定结果(30.42%)与参考值(30.43%)相符;采用氟化分离、氨水分离、草酸沉淀的分离方式很好地去除了镍、钴、锰、铝、铜、铁等非稀土杂质;按照实验方法测定镧镍合金样品中稀土总量,结果的相对标准偏差(RSD,n=11)均小于0.50%;加标回收率为 99%~101%。按照实验方法选取两家实验室对镧镍合金中稀土总量进行测定数据比对,结果基本一致并与参考值相符。  相似文献   

17.
钕铁硼是应用最广泛的永磁材料,每年会产生大量达到使用年限的废旧钕铁硼。这些废料中含有20%~30%稀土元素,是宝贵的二次资源。文中以金属铋为提取剂,通过火法熔炼回收废旧钕铁硼中的稀土元素,并利用高温超重力技术将过量的铋分离,用于循环使用。考察了熔炼过程中铋废质量比对稀土提取效率的影响,以及超重力离心过程中温度和重力系数对铋的回收率的影响。结果表明,在铋废质量比大于1∶1时,铋相与铁相分层效果较好,废旧钕铁硼中的稀土元素几乎全部进入铋相中;在较优分离条件:T=500℃、G=1 000下,稀土回收率达99.8%,铋的回收率达72.7%。该工艺的成功开发为废旧钕铁硼中稀土元素回收利用开辟了一条新途径。  相似文献   

18.
混合稀土金属中稀土总量的测定,目前尚无国家标准分析方法。通常采用酸分解试样后,以氨水分离钙和镁;高氯酸和硝酸破坏滤纸脱硅,草酸沉淀,灼烧成稀土氧化物,重量法测定。也有用酸分解试样后,分取部分试  相似文献   

19.
稀土沉淀条件及形态控制研究   总被引:8,自引:1,他引:8  
稀土工业试验中心为生产荧光级氧化稀土产物研究了草酸沉淀中温度、酸度、浓度及草酸用量等对稀土回收率的影响,并试验了控制沉淀产物粒度的各种手段。测定了杂质Fe、Ca、Ni、cu,Pb等在沉淀时的行为。杂质的含量尤其是Ca的沾污得到了控制。改善了碳酸稀土沉淀的形态以便于过滤操作和产物贮存。热分析表明,如果提供足够的氧可以在较低的的烧温度下把草酸稀土转化为氧化物。  相似文献   

20.
研究了钐钴合金中稀土总量(主要为钐)的测定。为配合资源利用和回收工艺的研究,采用传统的重量分析法,结合两次氨水分离,排除钴等元素的干扰,确定了钐钴合金中稀土的测定方法。本方法采用硝酸溶解样品,进行氨水分离、脱硅和草酸沉淀分离钴、铜、铁、硅、铝等杂质元素后,将沉淀于950℃高温炉中灼烧生成稀土氧化物(氧化钐),再以钐对氧化钐换算成金属稀土总量[1]。测定范围在15.00%~40.00%之间,加标回收效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号