首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co‐limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454‐pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.  相似文献   

3.
以海南岛吊罗山热带山地雨林101个物种的幼苗幼树为试验材料,测定其光合、叶片氮、磷含量及比叶面积;检验其相关关系,并按乔木,乔灌木(小乔木至大灌木)和灌木3个生活型组进行分组检验。研究结果表明,单位叶面积(Aarea)和单位叶重量的光合速率(Amass)均表现出灌木>乔木>乔灌木,方差分析表明,灌木和乔灌木之间Aarea差异显著;灌木和乔木以及灌木和乔灌木之间Amass差异显著(p<0.05)。Aarea与叶氮含量之间的相关性在不同生态型组和所有物种之间均达到极显著水平(p<0.0001);与叶磷之间的相关关系在灌木(p=0.0038),乔灌木(p=0.0002)以及所有物种(p<0.0001)之间达到极显著水平,但是在乔木中未达到显著水平(p>0.05);与SLA之间在灌木(p=0.0006)、乔木(p<0.0001)和所有物种(p<0.0001)之间达到极显著水平,但是在乔灌木中未达到显著水平(p>0.05)。Amass与叶片氮含量、SLA的相关关系在不同生活型组和所有物种中都达到极显著水平(p<0.0001);与叶磷含量之间的相关性在灌木(p=0.0004),乔灌木(p=0.0018)及所有物种(p<0.0001)中极显著,在乔木生活型组中也达显著水平(p=0.0377)。逐步回归表明,与Aarea相比,Amass估计结果更接近于实际测值。由此可见,海南岛热带山地雨林林下幼苗幼树的光合和叶氮、磷含量及SLA之间相关关系与基于成树的研究非常相似,并且A比A更能稳定体现这种相关性。  相似文献   

4.
Five caesalpinioid legumes, Afzelia africana, Afzelia bella, Anthonotha macrophylla, Cryptosepalum tetraphylum and Paramacrolobium coeruleum, and one Euphorbiaceae species, Uapaca somon, with a considerable range in seed sizes, exhibited different responses to inoculation by four species of ectomycorrhizal (ECM) fungi, Scleroderma dictyosporum, S. verrucosum, Pisolithus sp. and one thelephoroid sp. in greenhouse conditions. Thelephoroid sp. efficiently colonized seedlings of all of the five caesalpinioid legumes except U. somon, but provided no more growth benefit than the other fungi. Thelephoroid sp. and S. dictyosporum colonized seedlings of U. somon poorly, but stimulated plant growth more than the other fungi. The relative mycorrhizal dependency (RMD) values of the caesalpinioid legumes were never higher than 50%, whilst U. somon had RMD values ranging from 84.6 to 88.6%, irrespective of the fungal species. The RMD values were negatively related to seed mass for all plant species. Potassium concentrations in leaves were more closely related than phosphorus to the stimulation of seedling biomass production by the ECM fungi. Our data support the hypothesis that African caesalpinioid legumes and euphorbe tree species with smaller seeds show higher RMD values than those with the larger seeds.  相似文献   

5.
以中亚热带常绿阔叶林外生菌根树种罗浮栲和丛枝菌根树种木荷为研究对象,采用根袋法进行野外原位氮添加试验,研究了细根形态性状(比根长、比表面积、组织密度、平均根直径)和构型性状(分枝数、分枝比、根长增长速率、根尖密度、分枝密度),分析不同菌根树种细根形态和构型性状对氮沉降的响应.结果表明:随序级增加,外生和丛枝菌根树种细根...  相似文献   

6.
7.
Trait‐response effects are critical to forecast community structure and biomass production in highly diverse tropical forests. Ecological theory and few observation studies indicate that trees with acquisitive functional traits would respond more strongly to higher resource availability than those with conservative traits. We assessed how long‐term tree growth in experimental nutrient addition plots (N, P, and N + P) varied as a function of morphological traits, tree size, and species identity. We also evaluated how trait‐based responses affected stand scale biomass production considering the community structure. We found that tree growth depended on interactions between functional traits and the type or combination of nutrients added. Common species with acquisitive functional traits responded more strongly to nutrient addition, mainly to N + P. Phosphorous enhanced the growth rates of species with acquisitive and conservative traits, had mostly positive effects on common species and neutral or negative effects in rare species. Moreover, trees receiving N + P grew faster irrespective of their initial size relative to trees in control or to trees in other treatment plots. Finally, species responses were highly idiosyncratic suggesting that community processes including competition and niche dimensionality may be altered under increased resource availability. We found no statistically significant effects of nutrient additions on aboveground biomass productivity because acquisitive species had a limited potential to increase their biomass, possibly due to their generally lower wood density. In contrast, P addition increased the growth rates of species characterized by more conservative resource strategies (with higher wood density) that were poorly represented in the plant community. We provide the first long‐term experimental evidence that trait‐based responses, community structure, and community processes modulate the effects of increased nutrient availability on biomass productivity in a tropical forest.  相似文献   

8.
Aims Increasing anthropogenic nitrogen (N) deposition has been claimed to induce changes in species composition and community dynamics. A greenhouse experiment was conducted to examine the effect of increased N availability on growth and functional attributes of seedlings of five tree species with different life history characteristics under varying irradiances. The following questions have been addressed: (i) how do the pioneer and non-pioneer species respond in absolute growth and relative growth rate (RGR) to the interaction of light and nitrogen? (ii) how does the interaction between irradiance and nitrogen availability modulate growth attributes (i.e. functional attributes)? (iii) is there any variation in growth responses between leguminous and non-leguminous species along the light and nitrogen gradients?Methods Seedlings of five tree species (Acacia catechu, Bridelia retusa, Dalbergia sissoo, Lagerstroemia parviflora and Terminalia arjuna) were subjected to twelve combinations of irradiance and N levels. Various growth traits, including height (HT), basal area (BA), whole plant dry biomass (M D), leaf mass per unit area (LMA), leaf area ratio (LAR), net assimilation rate (NAR), RGR, biomass fractions, root-to-shoot ratio (R:S) and leaf nitrogen content, were studied to analyse intra- and inter-specific responses to interacting light and N gradients.Important findings Significant interactions for irradiance and N availability for majority of growth attributes indicates that growth and biomass allocation of seedlings were more responsive to N availability under high irradiance. However, species responded differentially to N addition and they did not follow successional status. Slow growers (B. retusa, a shade-tolerant species and L. parviflora, a light demander) exhibited greater response to N enrichment than the fast growers (A. catechu, D. sissoo and T. arjuna). However, N-mediated increment in growth traits was greater in non-legumes (B. retusa, L. parviflora and T. arjuna) compared with that of legumes (A. catechu and D. sissoo). Allocation of biomass to root was strongly suppressed at the highest N supply across species; however, at high irradiance and high N availability, a greater suppression in R:S ratio was observed for B. retusa. NAR was a stronger determinant of RGR relative to LAR, suggesting its prominent role in increased RGR along increasing irradiances. Overall, a higher growth response of slow-growing species to elevated N levels, particularly the non-pioneers (B. retusa and L. parviflora) suggests that future N deposition may lead to perturbations in competition hierarchies and species composition, ultimately affecting community dynamics in nutrient-poor tropical dry forests.  相似文献   

9.
于2019年8月研究中亚热带同质园11个树种叶片的比叶面积、氮(N)和磷(P)养分重吸收和化学计量特征,分析其养分利用策略.结果 表明:常绿阔叶树种(香叶、香樟、木荷、米槠、醉香含笑和杜英)和常绿针叶树种(杉木和马尾松)成熟叶和衰老叶的比叶面积、N和P含量普遍低于落叶阔叶树种(枫香、无患子和鹅掌楸),而成熟叶片C∶N和...  相似文献   

10.
Soil organic phosphorus (P) compounds can be the main P source for plants in P‐limited tropical rainforests. Phosphorus occurs in diverse chemical forms, including monoester P, diester P, and phytate, which require enzymatic hydrolysis by phosphatase into inorganic P before assimilation by plants. The interactions between plant interspecific differences in organic P acquisition strategies via phosphatase activities with root morphological traits would lead to P resource partitioning, but they have not been rigorously evaluated. We measured the activities of three classes of phosphatases (phosphomonoesterase, PME; phosphodiesterase, PDE; and phytase, PhT), specific root length (SRL), root diameter, and root tissue density in mature tree species with different mycorrhizal associations (ectomycorrhizal [ECM] or arbuscular mycorrhizal [AM]) and different successional status (climax or pioneer species) in Sabah, Malaysia. We studied nitrogen (N)‐ and P‐fertilized plots to evaluate the acquisition strategies for organic P under P‐limited conditions 7 years after fertilization was initiated. P fertilization reduced the PME activity in all studied species and reduced PhT and PDE activities more in climax species than in the two pioneer species, irrespective of the mycorrhizal type. PDE activity increased in some climax species after N fertilization, suggesting that these species allocate excess N to the synthesis of PDE. Moreover, PME and PhT activities, but not PDE activity, correlated positively with SRL. We suggest that climax species tend to be more strongly dependent on recalcitrant organic P (i.e., phytate and/or diester P) than pioneer species, regardless of the mycorrhizal type. We also suggest that trees in which root PME or PhT activity is enhanced can increase their SRL to acquire P efficiently. Resource partitioning of soil organic P would occur among species through differences in their phosphatase activities, which plays potentially ecologically important role in reducing the competition among coexisting tree species in lowland tropical rainforests.  相似文献   

11.
Solar ultraviolet-B radiation (UV-B, 280–315 nm) in the Southern Hemisphere has been increasing over the last few decades due to seasonal stratospheric ozone depletion associated with the ‘ozone hole’ and a more general erosion of the stratospheric ozone layer. We studied the effect of UV-B radiation on growth responses of Carex curta and C. decidua, the two most dominant sedges in a fen ecosystem in Tierra del Fuego (Argentina) in field plots and growth chambers where UV-B radiation was manipulated using different transparent plastic films that either transmitted or attenuated UV-B radiation. In the field, leaf and spike elongation of both species was unaffected by UV-B treatments in all four seasons studied (1997/98 through 2000/2001). Specific leaf areas (SLA) were only measured in the last two seasons and remained unaffected by UV-B for both species in the third field season. However, SLA decreased for C. curta in the fourth season but increased for C. decidua under near-ambient UV-B. Ecosystem specific root length was unaffected by UV-B. Although UV-B did not have a statistically significant effect on biomass production, there was a trend for a 15% higher production under near-ambient UV-B in the fourth year (P = 0.064). In the growth chambers, simulated ambient UV-B approximately equivalent to ambient UV-B in Tierra del Fuego stimulated seedling emergence of C. curta but reduced emergence of C. decidua; leaf elongation remained unaffected in both species. While plant morphology of C. curta remained unaffected by UV-B radiation, C. decidua had fewer tillers per plant, however tillers had more leaves and biomass under simulated ambient UV-B than under reduced UV-B radiation. The SLA of C. curta was unaffected by UV-B treatments; however, it was significantly lower for C. decidua under simulated ambient UV-B. Root morphology remained unaffected by UV-B for C. curta but roots of C. decidua were significantly thicker under simulated ambient UV-B. Taken collectively, our findings demonstrate that even moderate changes in UV-B radiation (e.g., corresponding to those expected with current stratospheric ozone depletion) may influence growth, morphology and biomass allocation in a species-specific manner for these native sedges in growth chambers and might also affect competitive relationships of these species in the field.Die ultraviolett-B-Strahlung (UV-B, 280–315 nm) über der Südhemisphäre ist in den letzten Dekaden bedingt durch eine saisonale Abnahme an stratosphärischem Ozon (“Ozonloch”) und einer zusätzlichen, eher generellen Erosion der stratosphärischen Ozonschicht angestiegen. Wir untersuchten den Effekt von UV-B-Strahlung auf verschiedene Wachstumsparameter von Carex curta und C. decidua, den zwei dominierenden Seggenarten in Seggenried-Ökosystemen in Tierra del Fuego (Feuerland, Argentinien) in einem Feldversuch (Versuchsdauer: vier Saisonen von 1997/1998 bis 2000/2001) und in Wachstumskammern (Versuchsdauer: 3 Monate). Die Manipulation der UV-B-Strahlung erfolgte dabei durch transparente Kunststofffilm-Filter, welche die solare UV-B-Strahlung entweder transmittieren (Behandlung: “normale UV-B-Strahlung”) oder abschwächen (Behandlung: “reduzierte UV-B-Strahlung”). Im Feldversuch war das Längenwachstum von Blättern und hren beider Seggen-Arten in keiner der vier Vegetationsperioden von den UV-B Behandlungen beeinflusst. Die spezifische Blattfläche der beiden Seggen wurde nur in den letzten beiden Vegetationsperioden gemessen und war in der dritten Vegetationsperiode für beide Seggen-Arten unbeeinflusst von der UV-B-Strahlung. Im vierten Jahr jedoch war die spezifische Blattfläche unter normalem UV-B bei C. curta reduziert und bei C. decidua erhöht. Die spezifische Wurzellänge im Ökosystem war unbeeinflusst von der UV-B-Strahlung. Die Biomasse-Produktion des Ökosystems war im dritten Versuchsjahr unbeinflusst von der UV-B-Strahlung, im vierten Jahr war jedoch ein Trend zu einer um 15% höheren Produktion bei normalem UV-B im Vergleich zu reduziertem UV-B erkennbar (P = 0.064). In den Wachstumskammern hat eine die Feldbedingungen in Tierra del Fuego simulierende UV-B-Strahlung das Aufkommen von C. curta-Keimlingen erhöht aber jenes von C. decidua reduziert; das Längenwachstum der Blätter war bei beiden Arten unbeeinflusst von der UV-B-Strahlung. Während die Morphologie von C. curta von der UV-B-Strahlung unbeeinflusst war, zeigte C. decidua weniger Sprosse pro Pflanze, diese Sprosse hatten jedoch mehr Blätter und Biomasse unter simulierten normalen UV-B Bedingungen als unter reduziertem UV-B. Die spezifische Blattfläche von C. curta war unbeeinflusst von der UV-B-Strahlung, hingegen war sie bei C. decidua unter simuliertem normalen UV-B-signifikant kleiner. Die Wurzelmorphologie von C. curta blieb unbeeinflusst von der UV-B-Strahlung, die Wurzeln von C. decidua waren jedoch signifikant dicker unter simuliertem normalen UV-B. Zusammenfassend zeigen unsere Ergebnisse, dass selbst moderate nderungen in der UV-B Strahlung, wie sie beispielsweise im Zuge der gegenwärtigen stratosphärischen Ozonabnahme vorkommen können, artenspezifische Modifikationen im Wachstum, der Morphologie und der Biomasse-Allokation dieser Seggen in Wachstumskammern bewirken und somit potentiell auch die Konkurrenzbeziehungen dieser Arten in den Seggenriedern beeinflussen können.  相似文献   

12.
Global change is affecting primary productivity in forests worldwide, and this, in turn, will alter long‐term carbon (C) sequestration in wooded ecosystems. On one hand, increased primary productivity, for example, in response to elevated atmospheric carbon dioxide (CO2), can result in greater inputs of organic matter to the soil, which could increase C sequestration belowground. On other hand, many of the interactions between plants and microorganisms that determine soil C dynamics are poorly characterized, and additional inputs of plant material, such as leaf litter, can result in the mineralization of soil organic matter, and the release of soil C as CO2 during so‐called “priming effects”. Until now, very few studies made direct comparison of changes in soil C dynamics in response to altered plant inputs in different wooded ecosystems. We addressed this with a cross‐continental study with litter removal and addition treatments in a temperate woodland (Wytham Woods) and lowland tropical forest (Gigante forest) to compare the consequences of increased litterfall on soil respiration in two distinct wooded ecosystems. Mean soil respiration was almost twice as high at Gigante (5.0 μmol CO2 m?2 s?1) than at Wytham (2.7 μmol CO2 m?2 s?1) but surprisingly, litter manipulation treatments had a greater and more immediate effect on soil respiration at Wytham. We measured a 30% increase in soil respiration in response to litter addition treatments at Wytham, compared to a 10% increase at Gigante. Importantly, despite higher soil respiration rates at Gigante, priming effects were stronger and more consistent at Wytham. Our results suggest that in situ priming effects in wooded ecosystems track seasonality in litterfall and soil respiration but the amount of soil C released by priming is not proportional to rates of soil respiration. Instead, priming effects may be promoted by larger inputs of organic matter combined with slower turnover rates.  相似文献   

13.
Osada N 《The New phytologist》2006,172(4):667-678
Based on an allometric reconstruction, the structure and biomass-allocation patterns of branches and current-year shoots were investigated in branches of various heights in the pioneer tree Rhus trichocarpa, to evaluate how crown development is achieved and limited in association with height. Path analysis was conducted to explore the effects of light availability, basal height and size of individual branches on branch structure and growth. Branch angle was affected by basal height, whereas branch mass was influenced primarily by light availability. This result suggests that branch structure is strongly constrained by basal height, and that trees mediate such constraints under different light environments. Previous-year leaf area and light availability showed positive effects on current-year stem mass. In contrast, branch basal height and mass negatively affected current-year stem mass. Moreover, the length of stems of a given diameter decreased with increasing branch height. Therefore the cost of biomass investment for a unit growth in length is greater for branches of larger size and at upper positions. Vertical growth rate in length decreased with increasing height. Height-dependent changes in stem allometry and angle influenced the reduction in vertical growth rate to a similar degree.  相似文献   

14.
Increased atmospheric carbon dioxide (CO2) concentrations and nitrogen (N) deposition induced by human activities have greatly influenced the stoichiometry of N and phosphorus (P). We used model forest ecosystems in open‐top chambers to study the effects of elevated CO2 (ca. 700 μmol mol?1) alone and together with N addition (100 kg N ha?1 yr?1) on N to P (N : P) ratios in leaves, stems and roots of five tree species, including four non‐N2 fixers and one N2 fixer, in subtropical China from 2006 to 2009. Elevated CO2 decreased or had no effects on N : P ratios in plant tissues of tree species. N addition, especially under elevated CO2, lowered N : P ratios in the N2 fixer, and this effect was significant in the stems and the roots. However, only one species of the non‐N2 fixers showed significantly lower N : P ratios under N addition in 2009, and the others were not affected by N addition. The reductions of N : P ratios in response to elevated CO2 and N addition were mainly associated with the increases in P concentrations. Our results imply that elevated CO2 and N addition could facilitate tree species to mitigate P limitation by more strongly influencing P dynamics than N in the subtropical forests.  相似文献   

15.
Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population‐level analogous above‐ and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species‐specific responses to combinations of influences. The strength of intraspecific above‐ and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above‐ and belowground traits to these multiple environmental factors together with partially species‐specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource‐acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above‐ and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species‐centred ecological theories on how plants respond to their environments (e.g. competitive/stress‐tolerant/ruderal and response‐effect trait frameworks) to be adapted to account for distinct plant‐environment interactions among distinct individuals of the same species and parts of the same individual.  相似文献   

16.
17.
18.
19.
为揭示不同菌根类型树种细根化学计量学性状对N添加的塑性响应,在福建省建瓯市万木林自然保护区常绿阔叶林内选择外生菌根树种罗浮栲(Castanopsis faberi)和内生菌根树种木荷(Schima superba)为研究对象,采用根袋法开展N添加试验,细根在根袋内生长半年后测定化学计量学指标(C、N、P、C/N、N/P、C/P)。结果表明:根序对细根化学计量学性状有显著影响,随着根序的增加,罗浮栲与木荷细根C浓度、C/N、C/P明显增加,N浓度与P浓度明显下降。N添加对细根C、N浓度均有极显著的促进作用,但对细根P浓度影响不显著,从而导致细根C/N维持稳定,但N/P、C/P升高,细根受P限制增加。细根化学计量学性状对N添加的塑性响应在不同序级间以及在外生菌根树种罗浮栲和内生菌根树种木荷之间均无显著差异。结论表明,研究所选内生、外生菌根树种细根化学计量学性状对N添加具有基本相似的响应。  相似文献   

20.
1. Newly germinated seedlings of six tree and shrub species with very small seeds (31–460 μg dry mass), one light-demanding and five shade-tolerant at the stage of establishment in the wild, were grown for 5 months in neutral shade houses with 0·5, 1, 3·5 and 7·5% daylight.
2. The ratio of yield in 7·5% to that in 1% was 8:1 for the light-demanding Melastoma malabathricum but only 2:1 for the confamilial shade-tolerator Pternandra echinata. The Pternandra, Urophyllum hirsutum, Ficus chartacea, Ficus grossularioides and Pellacalyx saccardianus showed a graded series of responses to irradiance, generally consistent with their apparent demands for light in the wild. In contrast, survival of very deep shade was not clearly related to light demand in nature.
3. The results support the conclusion drawn from observational studies that large seed size is not primarily adaptive in resisting shade but in resisting the associated risks of burial by litter, desiccation during dry spells, uprooting by birds and other kinds of damage by animals or falling debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号