首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杨世东  廖路花 《硅酸盐通报》2016,35(8):2647-2653
进水稀释配比R为75%的条件下,研究了厌氧氨氧化与反硝化的耦合作用.进水氨氮为(140±5) mg/L,COD为(900 +5) mg/L,通过改变厌氧反应器中亚硝酸盐氮与氨氮的质量浓度比(化学计量比),以考察不同亚硝态氮浓度对厌氧段总氮与有机物的去除效果.实验结果表明,在化学计量比为1.6的条件下,TN去除率高达73.58%,COD去除率为81.61%.结果表明,合适的化学计量比,可以强化厌氧氨氧化与反硝化的协同作用,提高系统的脱氮除碳效能.  相似文献   

2.
有机物对厌氧氨氧化生物脱氮影响研究   总被引:2,自引:2,他引:2  
以经过处理和未经处理的生活污水中添加碳酸氢铵、亚硝酸钠为试验用水,进行了两阶段对比研究,以期考察有机物对厌氧氨氧化生物脱氮效果的影响。研究结果表明,在平均pH值为8.07,ALK为855~1468mg/L、平均进水NH3-N、NO2--N、COD的质量浓度分别为325.57、301.63、139.35mg/L的条件下,二级串联反应器两阶段的TN去除率分别为78.63%、76.57%,COD去除率分别为64.54%、66.87%。在高氨氮、低碳氮比水质条件下,难降解有机物对厌氧氨氧化细菌活性没有太大影响。同时,扫描电镜观察结果证实,污泥中形成了以厌氧氨氧化球状菌为主,其它杆状菌、丝状菌共存的微生物混培体。此外,厌氧氨氧化菌表面附着的颜色较亮的白色小球,可能是反硝化菌。  相似文献   

3.
研究了同步亚硝化、厌氧氨氧化和反硝化(SNAD)-生物移动床(MBBR)工艺对煤气化废水脱氮的处理效果。结果表明,通过控制低DO含量和低污泥停留时间(SRT)的方法防止了好氧反应器中硝化菌的积累,为后续SNAD反应器提供了合适的进水。煤气化废水经好氧反应器去除COD后进入SNAD MBBR进行脱氮,控制SNAD反应器温度为30~33℃,DO的质量浓度为0.5~0.8 mg/L,p H为7.5~7.7,HRT为24 h。TN去除率达到90.7%,出水TN、NH_4~+-N的质量浓度分别低于20、5 mg/L,COD去除率达到89.6%,出水COD低于60 mg/L。运行25 d后,SNAD反应器中厌氧氨氧化菌的种类由接种时的Candidatus Brocadia变为Candidatus Kuenenia。  相似文献   

4.
针对传统人工湿地脱氮效率低,构建了潮汐-垂直流和垂直潜流人工湿地,对二级好氧单元出水进行深度脱氮。结果表明,潮汐-垂直流和垂直潜流人工湿地分别对 NH4+-N 和 NO3--N 去除效果较好,其平均去除率分别为 79.92% 和72.45%,且后者出水 TN 浓度低于城镇污水处理厂污染物排放标准一级 A 标准限值,但 NH4+-N 则未能达标。增大进水C/N 比均显著提升了两系统对 TN 的去除效率(p<0.005)。两系统上层填料对 NH4+-N 的去除贡献均超过 75%,同时对TN 和 COD 的去除贡献也最高,表明上层填料在污染物去除过程中发挥了主导作用。完全氨氧化细菌(相对丰度为1.87%)和潜在硝化菌 Rudaea(相对丰度为 0.58%)分别是潮汐-垂直流和垂直潜流人工湿地上层填料主导的氨氧化菌,而Rhodanobacter和Denitratisoma以及norank_c_OLB14和Denit...  相似文献   

5.
通过在进水中投加无机碳源(碳酸氢钠),研究无机碳源(IC)对一体化厌氧氨氧化反应器脱氮性能的影响。结果发现,进水IC含量对一体化厌氧氨氧化反应器脱氮性能有显著的影响。当进水IC的质量浓度为1.5 g/L时,反应器运行状况良好,NH_3-N去除率高达98.8%,TN去除率达到87%;当其质量浓度降低至1.0 g/L时,NH_3-N去除率降至85%,TN去除率降至75%;当其质量浓度降至0.5 g/L时,NH_3-N去除率仅为69%,TN去除率降至61%。当进水IC的质量浓度恢复至1.5 g/L后,出水的NH_3-N的质量浓度迅速降低至3 mg/L左右,去除率恢复至98.8%,TN去除率也上升至87%,说明IC含量对一体化厌氧氨氧化反应器的抑制作用具有可恢复性。较高IC含量有利于提高一体化厌氧氨氧化反应器的脱氮性能。  相似文献   

6.
针对晚期垃圾渗滤液NH~+_4-N浓度高、C/N低、深度脱氮困难的问题,采用CANON工艺在曝气/缺氧搅拌循环交替的运行方式下,处理晚期垃圾渗滤液实现了深度脱氮。系统经过130 d的驯化培养后成功启动,长期试验研究结果表明,在进水COD、NH~+_4-N、TN浓度(mg·L~(-1))分别为2050±250、1625±75和2005±352情况下,出水COD、NH~+_4-N、TN浓度(mg·L~(-1))能达到407±14、8±4和19±4,总氮去除率达到了98.76%。在未投加外碳源的情况下,CANON工艺在曝气/缺氧搅拌的运行方式下实现了对晚期垃圾渗滤液的深度脱氮。此外,经荧光原位杂交(FISH)检测表明,在该运行方式下能够成功富集氨氧化菌和厌氧氨氧化菌,各占总菌数的19.5%±1.3%和42.7%±5.02%,为CANON工艺用于处理晚期垃圾渗滤液的工程应用提供参考。  相似文献   

7.
在温度35℃pH值7.0左右,HRT为30 h的厌氧反应器中,研究了厌氧氨氧化与反硝化的耦合作用.进水氨氮为70~120 mg/L左右,COD为800~1200 mg/L左右条件下,将含亚硝酸盐和硝酸盐浓度人工配水按厌氧进水配比引入反应器中,氨氮、亚硝态氮进水浓度分别为75.43 mg/L、99.87 mg/L时,总氮负荷为233.82 mg/(L·d),考察不同进水配比R(0~100%)对厌氧反应器的脱氮除碳效能影响.实验结果表明,在进水配比为75%条件下,系统氨氮、亚硝态氮去除率达55.71%、63.65%,TN去除率最高达64.56%,COD去除率达80%左右.结果表明,适当的进水配比,不仅可以达到稀释厌氧进水的作用,还可以促使厌氧氨氧化与反硝化的协同脱氮除碳效果.  相似文献   

8.
利用升流式厌氧污泥床(UASB)反应器,采用实验室已经驯化好的厌氧氨氧化颗粒污泥,在低温(12℃)条件下进行连续流培养,研究低温胁迫条件下不同的海藻糖投加量对UASB反应器脱氮效能和厌氧氨氧化污泥活性的影响。结果表明,投加适宜的海藻糖可以提高厌氧氨氧化菌的活性。在投加海藻糖浓度为0.1 mmol/L时,脱氮效果最佳,NH4+-N、NO2--N、TN去除率分别为70%、73%、63%;与未投加海藻糖相比,能够使TN去除负荷提升26%左右。  相似文献   

9.
采用间歇曝气序批式膜生物反应器(IASBR)合并处理火力发电厂的脱硝氨站废水和再生废水,研究不同再生废水水质和m(COD)/m(TN)运行条件下的脱氮性能。结果表明,进水Ca~(2+)浓度对脱氮稳定性影响大,m(COD)/m(TN)对脱氮效率影响大,当进水Ca~(2+)为332 mg/L时,NH_4~+-N去除率为96.0%,TN去除率分别为71.0%(m(COD)/m(TN)=1.7)和88.9%(m(COD)/m(TN)=3.7)。当进水Ca~(2+)质量浓度提高至750 mg/L时,NH_4~+-N和TN的去除率降至31.5%和29.8%,w(MLVSS)/w(MLSS)从61%降低至21%。将进水Ca~(2+)质量浓度降至61 mg/L并间歇排泥,w(MLVSS)/w(MLSS)和NH_4~+-N去除率分别提高至71%和99.1%,但TN去除率仅为26.0%(m(COD)/m(TN)=3.2),说明反应器遭受高Ca~(2+)冲击后,脱氮性能难以在短期内恢复。IASBR实现了在低碳氮比条件下的高效脱氮,在处理高氨氮低碳氮比废水上具有优越性,但控制进水Ca~(2+)质量浓度是稳定运行的关键。  相似文献   

10.
采用序批式生物膜反应器(SBBR),经过4个阶段的培养,快速富集好氧氨氧化细菌(AOB)和厌氧氨氧化细菌(AnAOB),并考察不同低碳氮比对工艺脱氮性能的影响。结果表明,NH4^+-N去除率可达到99%以上,TN去除率可达到90%以上。对应C/N=0、1和2时,反应器出水NH4^+-N和TN去除率分别为99.59%、99.5%、98.47%和93.75%、97.22%、98.11%。说明少量COD的存在,可实现同步硝化-厌氧氨氧化-反硝化,且在一定程度上提高脱氮效率。  相似文献   

11.
针对生物曝气滤池(BAF)处理效率常因进水碳源不足和硝化不充分而受到限制的问题,本研究报道了1种厌氧-缺氧-好氧(A~2O)耦合BAF强化污水脱氮除磷和有机物去除的新策略,并进一步探究进水C/N对营养盐污染物去除的影响。结果表明,A~2O耦合BAF能够有效去除营养盐,并且COD、TN和TP的去除率分别为91%、84.9%和92%。C/N对A~2O耦合BAF反应体系COD的去除影响不明显,并且COD去除主要集中在厌氧区域。m(C)/m(N)由3增加至5,TN和磷酸盐的去除效率增加,但进一步增加C/N,TN和磷酸盐的去除不明显,因此A~2O耦合BAF体系的优化m(C)/m(N)是5。  相似文献   

12.
探究了2种工艺稳定高效启动方法,以及两装置的连接方式及进水改变对总出水的影响。分别启动厌氧氨氧化于短程硝化装置,调整负荷水质以使短程硝化出水满足厌氧氨氧化装置进水要求。短程硝化装置以进水pH=8.4、NH_4~+-N的质量浓度170 mg/L、亚硝氮生成率为14.4 mg/(L·h)启动,亚硝氮积累率稳定在85%以上。厌氧氨氧化装置以进水NH_4~+-N、NO_2~--N的质量浓度分别为150、198 mg/L,HRT为24 h,TN去除率84%启动并稳定。装置连接后,厌氧氨氧化装置进水由人工配水改为短程硝化出水调配水,相较原进水COD残余约80 mg/L,NO_3~--N的质量浓度15 mg/L,TN去除率有些微的提升,但COD对成熟的厌氧氨氧化装置影响还有待检测。成熟稳定的厌氧氨氧化装置可以很好地适应短程硝化出水调配水,并对进水水质变化具有较好的耐受性。  相似文献   

13.
通过中试探讨了在水温分别为10、12、18、23℃下3级组合生物滤池的脱氮效果,并确定优化工艺条件。结果表明,在进水体积流量为1.54 m3/h时,温度对系统TN去除效果的影响远大于对于系统COD去除效果的影响,水温由常温降低至10℃左右时,系统TN去除率降低了近15%,出水TN的质量浓度平均由12.06 mg/L升高至17.28mg/L;低温条件下第2级好氧滤柱气水体积比为4:1,回流体积比为100%时,反硝化脱氮能达最佳效果;通过在第3级缺氧柱前投加碳源进行强化脱氮,优化的COD/ρ(TN)为5:1,第3级对TN去除率为33.52%,出水TN的质量浓度平均为11.48 mg/L,能稳定达到GB 18918-2002一级A排放标准。  相似文献   

14.
文章研究了某味精精制废水处理工程的脱氮机理。该工程采用A/O工艺设计,实验测定期间,工程进水流量、COD、总凯氏氮(TKN)分别为(1 270±335) m3/d、(1 724±897) mg/L、(93.5±41.5) mg/L,出水COD、TKN、总氮(TN)分别为(10.4±5.1)、(0.6±0.4)、(7.2±1.5) mg/L,COD、TKN、TN平均去除率分别为99.4%、99.4%、91.7%。实验结果表明:系统高效脱氮是由于A池污泥反硝化活性高和O池前端发生了显著的同时硝化反硝化所致,分别占TN去除总量的56%和44%。  相似文献   

15.
对厌氧氨氧化的脱氮效果受HRT、溶解氧和有机物的影响情况进行研究。采用人工配水,控制pH为7.5~8.0,温度为(35±1)℃,进水NH_4~+-N、NO_2~--N质量比为1∶1.32,通过进水脱氧和不脱氧改变溶解氧的浓度,有机物影响试验采用厌氧瓶静态试验。以总氮平均负荷为0.472 kg/(m~3·d)为前提条件时,得到复合式UASB厌氧氨氧化反应器的最适宜HRT为12 h;改变条件,当溶解氧为0.7~1.0 mg/L,虽然反应受到影响,但还可以稳定运行;将DO降到(0.2±0.1) mg/L,经过一段时间的反应,厌氧氨氧化反应的处理效果恢复;再次改变进水COD为50~150 mg/L,NH_4~+-N去除率可维持在75%以上,NO_2~--N去除率可达90%以上,COD去除率最低可达到74%,仍保持在较高水平。对于厌氧氨氧化脱氮效果的影响,HRT、溶解氧较大,有机物较小。  相似文献   

16.
在厌氧折流板反应器(ABR)中探究厌氧氨氧化菌和异养反硝化菌的分步培养,以及进水氮负荷波动对系统性能的影响。结果表明,维持C/N为0.65,逐步提升总氮负荷(NLR),50 d左右可实现厌氧氨氧化与反硝化协同脱氮,总氮去除率可达95.8%。NLR波动值低于1.04 kg/(m3·d)时,对工艺脱氮性能无显著影响。负荷变化幅度越大,厌氧氨氧化菌活性受抑制越显著,对反硝化菌基本无影响,负荷波动值达到2.10 kg/(m3·d)时厌氧氨氧化对氮的去除贡献(CA)下降至54.8%,反硝化耦合厌氧氨氧化协同脱氮可有效提升系统的稳定性。胞外聚合物(EPS)对系统负荷波动有较好的响应规律,负荷波动越大,EPS提高越多,有利于提高系统性能的稳定性。  相似文献   

17.
首先采用厌氧氨氧化生物膜反应器建立稳定的厌氧氨氧化处理系统,控制温度为(32±2)℃,pH为(7.2±0.2)。通过控制进水基质比(NO_2~--N/NH_4~+-N)分别为1:1、1:1.1、1:1.2、1:1.32和1:1.4来研究基质比对厌氧氨氧化生物膜工艺脱氮效能的影响,在基质比1:1.20时,生物膜反应器的脱氮效果最好,进水NH_4~+-N为150 mg/L,HRT为12 h,其出水的平均NH_4~+-N和NO_2~--N在质量浓度分别为6 mg/L和3.5 mg/L,NH_4~+-N和NO_2~--N的平均去除率分别为96%、98%,此时的脱氮性能最好且稳定,其发生反应的NO_2~--N/NH_4~+-N最接近厌氧氨氧化反应式中的1.32。  相似文献   

18.
厌氧氨氧化影响因素实验研究   总被引:3,自引:0,他引:3  
研究了水力停留时间(HRT)、温度、pH和进水m(NH_4~+-N)∶m(NO_2~- -N)对厌氧氨氧化脱氮性能的影响.实验结果表明,厌氧氨氧化的最佳HRT、温度、pH、进水m(NH_4~+-N)∶m(NO_2~- -N)分别为12 h、30~35℃、7.02~8.36、0.95~1.2.在最佳反应条件下,当进水TN质量浓度为365.5~432.4 mg/L时,对NH_4~+-N、NO_2~--N、TN的平均去除率分别为96.8%、97.8%、92.4%.  相似文献   

19.
以葡萄糖作为有机碳源的模拟废水为处理对象,采用序批式生物膜反应器(SBBR),考察不同COD对同步亚硝化、厌氧氨氧化和反硝化(SNAD)工艺脱氮性能的影响。结果表明,SNAD工艺的脱氮除性能随着COD/ρ(NH4+-N)的增加呈逐渐增强趋势,COD/ρ(NH_4~+-N)为0.80时,TN平均去除率从85.00%增至96.86%,COD平均去除率为82.81%。运行120 d后,生物膜中与脱氮相关的浮霉菌门和变形菌门相对丰度分别从56.44%和13.67%增至62.71%和16.00%。系统中仅检出一种厌氧氨氧化菌(AnAOB)为Candidatus_Jettenia,葡萄糖对Candidatus_Jettenia有显著促进作用,相对丰度从44.88%大幅增至62.33%,但却对SM1A02有极强的抑制作用,相对丰度从14.45%降至0.19%。反硝化菌(DNB)为Denitratisoma,相对丰度从4.08%增至10.17%。  相似文献   

20.
采用升流式厌氧流化床反应器,研究高浓度厌氧氨氧化工艺的脱氮效能。接种普通好氧活性污泥,以低浓度配水(NH_4~+-N 60 mg/L,NO_2~--N 50 mg/L)驯化厌氧氨氧化菌,经150 d富集,填料表面形成红色生物膜,NH_4~+-N和NO_2~--N同步去除率高于80%,反应器成功启动;采用低基质进水(NH_4~+-N 60~300 mg/L,NO_2~--N 100~355 mg/L),随着进水容积负荷的增加,总氮去除负荷从0.39 kg/(m~3·d)提升至1.29 kg/(m~3·d);采用高基质进水(NH_4~+-N 390 mg/L,NO_2~--N 400 mg/L)时,总氮去除负荷降至1.08 kg/(m~3·d),150%回流能有效缓解基质对厌氧氨氧化菌的活性抑制,反应器总氮去除负荷逐渐恢复并升高至1.76 kg/(m~3·d),脱氮效能提高63%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号