首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为明晰Li Mn1.5Ni0.5O4正极材料的动力学性能,采用水热辅助共沉淀法合成了尖晶石Li Mn1.5Ni0.5O4正极材料,并采用扫描电镜(SEM)、X射线粉末衍射(XRD)和电化学阻抗(EIS)研究了材料的结构和锂离子嵌脱动力学.实验结果表明:共沉淀法制备的Li Ni0.5Mn1.5O4材料颗粒呈均匀球形,且平均粒径较小,粒度分布较窄.在循环过程中,Li Ni0.5Mn1.5O4的电荷转移电阻增大,锂离子扩散系数减小,进而电子电导率和离子电导率下降.温度升高后,Li Ni0.5Mn1.5O4材料的溶液电阻变化不大,但是电荷转移电阻逐渐增大,锂离子扩散系数逐渐减小;此外,随着温度的升高,Li Ni0.5Mn1.5O4材料的溶解速度加快,从而导致SEI膜的厚度增大.Li Ni0.5Mn1.5O4材料的嵌脱锂动力学与温度和循环次数有密切关系.  相似文献   

2.
LiAl0.05Mn1.95O4正极材料锂离子嵌脱动力学研究   总被引:1,自引:1,他引:0  
采用超声辅助溶胶凝胶法成功制备了LiAl0.05Mn1.95O4正极材料,并利用循环伏安和电化学阻抗谱研究了不同合成方法对LiAl0.05Mn1.95O4正极材料锂离子嵌脱动力学的影响.结果表明:超声辅助溶胶凝胶法制备的尖晶石材料具有更好的可逆性和最小的电荷转移电阻;LiMn2O4(sol-gel)、LiAl0.05Mn1.95O4(sol-gel)和LiAl0.05Mn1.95O4(UASG)的交换电流密度分别为2.57×10-2、4.16×10-2、5.08×10-2mA.cm-2,固相锂离子扩散系数分别为3.27×10-10、4.94×10-10、6.91×10-10cm2.s-1,表明超声辅助溶胶凝胶法制备的样品具有较好的锂离子嵌脱动力学.  相似文献   

3.
选用锰酸锂(Li Mn2O4)、复合镍钴锰酸锂(Li Ni1/3Co1/3Mn1/3O2)按不同比例混合作为正极,软碳作为负极材料,制备复合镍钴锰酸锂与锰酸锂混合型锂离子全电池(简称混合型锂离子全电池),选择质量分数为15%,35%的Li Mn2O4与Li Ni1/3Co1/3Mn1/3O2混合作为正极活性物质进行实验,研究Li Mn2O4对锂离子全电池充放电性能、安全性能、倍率放电性能、脉冲功率特性等的影响。结果表明:Li Mn2O4质量分数为35%时,既提升了锂离子全电池的电性能,又保证了其较高的安全性能;常温下电流为1I1(I1代表1 h率放电电流)充放电循环预计寿命可达到1 500周,55℃高温下电流为0.5I1充放电循环335周容量保持在92%以上;在放电深度(DOD)10%~80%内10 s脉冲充放电状态下,混合型锂离子全电池阻抗均在9 mΩ以下,50%DOD时的10 s放电比功率在700 W/kg以上。  相似文献   

4.
采用溶胶-凝胶法制备了锂离子电池正极材料尖晶石型Li Mn2O4粉体及薄膜.采用X射线衍射谱(XRD)、扫描电子显微镜(SEM)及原子力显微镜(AFM)等表征方法对所得产品进行物性分析,通过循环伏安(CV)和电化学交流阻抗谱(EIS)等电化学表征手段考察了两种电极的动力学过程,并得到相应的动力学参数.测试结果表明,Li Mn2O4材料的结晶度、粒度和电极的厚度、比表面积、碳材料导电剂的添加等因素影响了电极过程动力学性质,从而导致其电化学性能的差异.  相似文献   

5.
以Li2CO3和TiO2为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材料,利用XRD、SEM和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在1.0~2.2 V(vs.Li/Li+)范围内,以0.1 mA/cm2的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒电流充放电测试。其首次放电比容量为167 mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较大的初始放电比容量和良好的循环性能。  相似文献   

6.
以丙氨酸和水杨酸为络合剂和燃料,采用凝胶燃烧法制备了锂离子电池正极材料尖晶石LiMn2O4粉体.对凝胶前驱体及烧结产品进行了TG-DTA、XRD分析;通过循环伏安、交流阻抗及充放电测试对该产品的电极过程动力学性质及充放电性能进行了表征.结果表明,该方法烧结温度低、时间短,制备的产品为纯相尖晶石结构;不同电位下溶液电阻、膜电容均保持稳定,Li 扩散系数为10-12~10-10 cm2/s.该材料具有较好的充放电性能.  相似文献   

7.
为开发具有优良循环性能和安全性能的大型锂离子电池的正极材料,将不同比例的LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4材料进行共混,研究了LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4共混以及共混比例(10∶0、8∶2、7∶3、6∶4、5∶5、0∶10)对锂离子电池的首次放电性能、循环性能和倍率性能以及交流阻抗和循环伏安曲线的影响,并采用扫描电镜对电极材料进行了表征.研究结果表明,共混比例会影响材料的电化学性能,8∶2,7∶3和6∶4配比的混合材料的体积比容量、循环性能和倍率性能要好于纯LiNi_(0.4)Co_(0.2)Mn_(0.4)O_2和Li Mn2O4材料.其中,8∶2配比的材料性能最好.  相似文献   

8.
锂离子电池正极材料LiMn2O4的电化学性能   总被引:1,自引:0,他引:1  
锂掺杂到尖晶石型锂锰氧化物中时,锂掺杂量对材料的结构、初始容量及循环性能都有明显的影响.利用循环伏安法、恒电流充放电法研究了尖晶石型锂锰氧化物的电化学性质,并从结构化学的角度分析了充放电机理.结果表明,过量锂的锂锰氧化物具有两个氧化还原峰,放电容量大,可逆性好.当Li1+xMn2O4中的x=0.05时,其容量最高,稳定性最好.  相似文献   

9.
采用固相烧结法,以LiOH、FeC2O4.2H2O、Nb2O5、正硅酸四乙酯和蔗糖为原料制备出单斜结构的Li2.05FexNb2(1-x)/3SiO4/C(x=1,0.99,0.98,0.96,0.94,0.92,0.90)系列样品.通过红外光谱、X射线衍射、扫描电镜、恒电流充放电测试、交流阻抗和循环伏安法等方法研究了制备样品的结构及电化学性能.实验结果表明,颗粒尺寸介于0.2~1.5μm之间的Li2.05Fe0.96Nb0.026 7SiO4/C的充放电性能最好,在0.3C倍率电流下,第1次循环的放电容量为116.6 mAh/g,第30循环的放电容量为78.3 mAh/g.掺铌减少了样品的电荷传递阻抗,提高了锂离子的扩散系数.  相似文献   

10.
以Li2CO3、Ni(CH3COO)2·2H2O、Mn(CH3COO)2·4H2O、Co(CH3COO)2·4H2O和Na2CO3为原料,通过直接沉淀法制备了具有α-NaFeO2型层状结构的微米Li1.52Ni0.30Mn0.78Co0.06O2.00正极材料.通过X射线衍射、扫描电镜、恒电流充放电、交流阻抗、循环伏安法等方法研究了样品的结构和电化学性能.结果表明:充电截止电压4.6V时样品的充放电性能最佳.在电流200 mAh·g-1时,该样品第1循环和第40循环的放电容量分别为150.2 mAh·g-1、155.0 mAh·g-1;样品的电化学反应受电荷传递阻抗和和Li+扩散的共同控制.  相似文献   

11.
采用固相合成方法制备了双层碳包覆Li_4Ti_5O_(12)复合材料.通过X射线衍射、扫描电子显微镜、循环伏安、电化学阻抗和恒流充放电分析等测试,研究了产物的结构、形貌及电化学性能.结果表明:通过碳包覆改性后,Li_4Ti_5O_(12)的容量可明显提高,碳的包覆对Li_4Ti_5O_(12)的结构没有影响;2 C倍率下首次放电比容量为118.8 mAh/g,300次循环后放电比容量仍为108.5 mAh/g,容量保持率为91.3%,具有非常好的电化学性能.  相似文献   

12.
The capacity intermittent titration technique (CITT) was developed based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) method, to continuously determine the solid diffusion coefficient (D) of the intercalary species within insertion-host materials with a small voltage region. The linear equations of D vs the value of ratio of the potentio-charge capacity to the galvano-charge capacity (q) were given. By the CITT technique,the Li solid diffusion coefficients within LiMn2 O4 at different voltages were determined. The results show that the values of D varied from 3. 447× 10-9 to 7.60× 10-11 cm2/s in the voltage range of charge from 3.3 to 4.3 V as a function of voltage with "W" shape.  相似文献   

13.
通过固相法制备了1.5Li2O-P2O5-xTiO2(x=0.1、0.2…0.9)玻璃以及微晶玻璃快离子导体。对制备的玻璃以及微晶玻璃分别进行了交流阻抗和充放电电化学性能等测试。结果表明,1.5Li2O-P2O5-xTiO2微晶玻璃导电率比对应的玻璃导电率要高,最高为1.77×10^-6S/cm,二者的导电率都随TiO2含量的增加而增加,而且1.5Li2O-P2O5-xTiO2微晶玻璃作为锂离子电池负极充放电性能比对应的玻璃充放电性能要好,但是二者总体充放电性能不佳,最高首次放电比容量为283 mAh g^-1。  相似文献   

14.
高温固相法合成尖晶石型Li4Ti5O12及其性能研究   总被引:1,自引:1,他引:0  
以Li2CO3 和TiO2 为原料,以乙醇为分散剂,采用高温固相方法合成Li4Ti5O12锂离子电池负极材 料,利用XRD、SEM 和电化学测试等方法对合成材料的结构、形貌以及电化学性能进行了表征。系统考察了热处理 温度对Li4Ti5O12负极材料结构及电化学性能的影响,同时也研究了锂的投料量对Li4Ti5O12电化学性能的影响。在 1.0~2.2V(vs.Li/Li + )范围内,以0.1mA/cm2 的电流密度对最佳工艺条件下合成的Li4Ti5O12负极材料进行了恒 电流充放电测试。其首次放电比容量为167mAh/g,经过30周充放电循环后放电比容量几乎没有衰减,表现出较 大的初始放电比容量和良好的循环性能。  相似文献   

15.
This work was financially supported by the National Natural Science Foundation of China (No.50472093).  相似文献   

16.
为解决高温烧结制备的锂离子电池负极材料Li4Ti5O12易团聚、形貌差的问题,采用水热低温烧结法,以钛酸丁酯、氢氧化锂分别为钛源和锂源,异丙醇为溶剂,制备纯相Li4Ti5O12。用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和比表面测试仪对样品进行表征,采用恒流充放电法对钛酸锂进行电化学性能评价。结果表明,在400℃低温煅烧后可得到单一纯相尖晶石型Li4Ti5O12,所制备样品为具有大比表面积的纳米絮状粉体,表现出良好的电化学性能,在常温条件下,以0.1C倍率进行充放电,首次放电容量达到155.7mA·h/g,经50次循环后容量仍保持约143mA·h/g,容量保持率达到91.8%。  相似文献   

17.
尖晶石型锰酸锂制备及其电化学性能   总被引:4,自引:0,他引:4  
锰酸锂被认为是取代商品锂离子电池正极材料的LiCoO2候选材料.以二氧化锰、醋酸锰及氢氧化锂为原料,蒸馏水为分散剂,在空气气氛下进行分段烧结,控制烧结温度和时间,制备了锂离子电池正极材料锰酸锂.用X射线衍射仪,电子扫描电镜对产物的结构特征、微观表面形貌和恒流充放电性能进行了表征.结果表明:所制得正极材料为尖晶石型锰酸锂,结晶度高,无杂质相,材料颗粒的粒径均匀,首次放电比容量为117.3 mAh/g(0.5 mA/cm2,2.8~4.4 V,vs.Li+/Li);50次循环后,放电比容量为107.9 mAh/g,不可逆容量损失为9.4 mAh/g,比容量保持率为92.0%.得到了很好的综合电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号