首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
荧光团杂化纳米SiO2微球作为生物标记探针的应用研究   总被引:4,自引:0,他引:4  
近年来 ,无机发光量子点[1,2 ] 、荧光纳米乳液微球[3 ,4 ] 及发光团掺杂 Si O2 纳米粒子[5] 等纳米荧光探针的出现 ,为生物标记提供了新的发展领域 .将有机染料以共价方式包埋在 Si O2 中所得的复合材料具有独特的光学性质 ,然而其在生物标记方面的应用并未得到重视[6 ,7] .本实验通过控制荧光团修饰的硅烷前体在反相胶束体系中的水解缩合 ,合成了用于生物染色和诊断的高灵敏度、高稳定性的新型荧光团杂化纳米 Si O2 微球 ( NFHS微球 ) .在 NFHS微球中 ,荧光团以共价方式地均匀分散在 Si O2 网络结构中 ,避免了与外界体系中溶解氧的…  相似文献   

2.
利用—Si—O—共价键将离子液体嫁接在纳米TiO_2表面,制备离子液体@TiO_2纳米复合材料,并利用红外光谱、差热分析、元素分析等技术手段进行了分析。光催化性能研究表明,在紫外光照射60 min后,[C8tespim]Br@TiO_2([C8tespim]:N-3-(3-三乙氧基硅烷基丙基)-4,5-二氢咪唑)复合材料能够将甲基橙100%脱色,明显优于TiO_2P25的光催化降解性能。同时发现其光催化性能与阴离子类型有密切关系,活性顺序为[C8tespim]Br@TiO_2[C8tespim]PF6@TiO_2[C8tespim]Tf2N@TiO_2。  相似文献   

3.
原位分散紫外光固化SiO2纳米复合材料的性质   总被引:21,自引:0,他引:21  
丙烯酸酯聚合物;原位分散紫外光固化SiO2纳米复合材料的性质  相似文献   

4.
可聚合纳米无机氧化物杂化材料在紫外光固化涂料中具有较好的分散性能.与涂料中的单体和预聚物进行光聚合形成有机/无机杂化网络结构的聚合物,从而提高涂料固化膜的热稳定性能、硬度和耐磨性能等,在紫外光固化涂料的制备方面有着广阔的应用前景.目前,该类杂化材料主要采用硅烷偶联剂改性、化学接枝改性和溶胶一凝胶方法制备.本文就可聚合纳...  相似文献   

5.
利用改进的本体溶胶-凝胶过程制备单组分二氧化硅单块   总被引:3,自引:0,他引:3  
溶胶 -凝胶方法具有较低的反应温度 ,可在材料处理的最初阶段即纳米尺度上对材料的结构进行控制 ,所制备材料具有较高均一性和高纯度等优点 ,长期以来引起了众多科学家的关注[1~ 4 ] .然而 ,传统的溶胶 -凝胶工艺存在凝胶时间过长、体积收缩大、形状和尺寸无法控制、严重的龟裂、成本高以及环境污染等缺点 ,限制了其应用 .针对上述问题 ,我们改进了传统的溶胶 -凝胶过程 ,提出本体溶胶 -凝胶技术和复合本体溶胶 -凝胶技术 [1,2 ] .本体溶胶 -凝胶技术由于加入的凝胶促进剂碳酸盐与 Si O2 相容性差 ,存在块体成功率相对较低、表面不光滑和…  相似文献   

6.
以三氯化钛为钛源合成了纯金红石型Ti O2纳米棒,用正硅酸乙酯对纳米Ti O2表面进行修饰,得到Si O2为壳,Ti O2为核的纳米粒子(Si O2@Ti O2),Ti O2纳米棒的平均长度约为50 nm,平均直径约为8 nm,Si O2包覆层的厚度约为4 nm,Si O2@Ti O2的最大吸收波长较Ti O2的最大吸收波长存在微弱蓝移.采用熔融共混法制备聚左旋乳酸(PLLA)/(Si O2@Ti O2)纳米复合材料.采用透射电子显微镜(TEM)、热失重分析(TGA)、差示扫描量热分析(DSC)、紫外-可见吸收光谱(UV-Vis)和二维广角X射线散射(2D-WAXS)等研究了Si O2@Ti O2的加入对PLLA耐热性能、结晶性能、紫外线屏蔽性能及拉伸性能的影响.结果表明,Si O2@Ti O2在PLLA基体中分散较好,Si O2@Ti O2提高了PLLA的热分解温度,具有异相成核的作用.PLLA/(Si O2@Ti O2)纳米复合材料薄膜在保持较高可见光透过率的同时具有优异的紫外线屏蔽性能.Si O2@Ti O2的加入使PLLA在较高温度下拉伸时能够获得更高的结晶度和取向度.  相似文献   

7.
胶体晶体中的两种排列方式及堆积模式   总被引:2,自引:0,他引:2  
由单分散的有机或无机粒子制备三维有序的胶体晶体越来越受到人们的关注 [1~ 3 ] ,单分散颗粒如何排布和堆积是形成三维有序胶体晶体的关键 .自然界中的蛋白石 (Opal)是由单分散 Si O2 粒子的三维有序堆积中渗入水溶性的硅酸盐固化而成的 .仿照自然界的模式由单分散的有机或无机粒子制备三维有序的胶体晶体是对当今科学技术的一个挑战 [4 ] .以胶体晶体为模板制备有机、无机、金属和陶瓷等的多孔材料在催化、吸附以及光子晶体等方面具有重要的应用前景 [5~ 9] .本文研究了以单分散的聚苯乙烯 -甲基丙烯酸甲酯 -丙烯酸 [P(St- MMA- AA)…  相似文献   

8.
通过溶胶.凝胶再程序升温熔剂热一步法制备了K8[γ-SiW10O36]·12H2O/ZrO2纳米复合光催化材料,采用FT-IR、XRD、ICP-AES和氮气吸附-脱附测定等测试手段对其组成、结构、形貌等进行了表征.结果表明,复合材料中杂多酸的基本结构未发生明显变化,并且该复合材料比表面积增大(120.061m2/g)的同时还具有孔结构,平均孔径约为3.7nm.在微波无极灯照射下,以微波增强光催化降解二甲酚橙为模型反应,研究了该纳米复合材料微波增强光催化性能,结果表明,在微波作用下,复合光催化材料K8[γ-SiW10O36]·12H2O/ZrO2的光催化活性显著增强.  相似文献   

9.
纳米二氧化钛催化苯乙烯环氧化反应的研究   总被引:5,自引:0,他引:5  
戚建英  杨启云 《分子催化》2000,14(4):294-296
通过烯烃的环氧化反应 ,可制得活泼的有机合成中间体——环氧化物 ,再通过选择性开环或功能团转化 ,可以方便地合成多种有价值的化合物 .因此 ,催化烯烃环氧化的反应得到广泛的研究 ,其中含钛催化剂具有较好的催化性能 ,如 Ti- ZSM- 5沸石 [1,2 ] 、Ti- ZSM- 1 1沸石[3 ,4 ] 在 H2 O2 存在下就有高的催化活性 ;α-和β- [Si W9Ti3 O4 0 ]10 -也有一定的催化活性 [5] ;Sharpless等人 [6]采用 Ti[OCH( CH3 ) 2 ]4和酒石酸二乙酯诱导体 ,可高选择性催化烯丙醇的不对称环氧化反应 .纳米 Ti O2 ,由于颗粒小 ,处于固体表面的原子多 ,表…  相似文献   

10.
碳纳米管/氧化锌纳米复合材料的制备及其形貌控制   总被引:4,自引:0,他引:4  
0引言碳纳米管(CNT)优良的力学、电学、热学性能使其在材料、储能、传感等许多领域都有广泛的应用前景,近年来,以碳纳米管为载体制备的纳米复合材料因其独特的应用潜力而受到广泛关注:彭峰等[1]用FeSO4-H2O2体系修饰碳纳米管,成功地制备了由碳纳米管负载的Fe2O3催化剂;Chen等[2]用溶胶凝胶法制备了CNT/SnO复合材料,作为Li离子电池阴极材料,测试表明它的电化学性能比单独的CNT和SnO材料都有所增强;Jitianu等[3]用溶胶凝胶和水热方法得到不同形貌的TiO2/CNT复合结构,这种新型的纳米复合材料在光催化方面有着重要的应用前景。纳米Z…  相似文献   

11.
聚碳酸1,2-丙二酯/蒙脱土复合材料的制备与性能   总被引:2,自引:0,他引:2  
利用阳离子交换法,以十六烷基三甲基溴化铵(HTAB)改性钠基蒙脱土制备了有机改性蒙脱土(OMMT),OMMT的层间距达到了2nm,比普通的钠基蒙脱土增加了0.74nm.采用熔融插层法制备了插层-絮凝型PPC/OMMT复合材料,当复合材料中OMMT含量为5wt%时,复合材料的杨氏模量较纯PPC树脂大幅度提高了61.8%,同时玻璃化温度(Tg)提高了2.4℃,热分解温度提高了32.3℃.因此,OMMT对大幅度提高PPC的杨氏模量具有很大的潜力.  相似文献   

12.
Effects of pH on mechanical properties as well as morphological studies of sol–gel derived in situ silica in polyvinyl chloride-50% epoxidized natural rubber (PVC-ENR50) nanocomposites are reported. In particular, a range of acid concentrations was investigated. These nanocomposites were prepared by solution casting technique and tetraethoxysilane (TEOS) was used as the silica precursor. The prepared nanocomposites were characterized using tensile test, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The tensile test indicated that the highest mechanical strength was at 30% TEOS added for the nanocomposite prepared at pH 2.0. At pH 1.0 and 1.5 the maximum tensile strength reading was at 20% TEOS added with value of 24.3 and 24.5 MPa, respectively. SEM and TEM revealed the dispersion of silica particles in the polymer matrix. For nanocomposites prepared at pH 1.0 and 1.5, the silica particles were finely dispersed with the average size of 60 nm until 20% TEOS added. Meanwhile for nanocomposite prepared at pH 2.0, silica particles were homogenously distributed in the polymer matrix with average diameter of 30 nm until 30% TEOS and agglomerated after 30% TEOS loading.  相似文献   

13.
Polyethylene(PE)/clay nanocomposites have been successfully prepared by in situ polymerization with an intercalation catalyst titanium-montmorillonite (Ti-MMT) and analyzed by X-ray diffraction analysis (XRD), Fourier transform infrared analysis (FT-IR), Transmission electron microscopy (TEM), differentail scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and tensile testing. XRD and TEM indicate that the clay is exfoliated into nanometer size and disorderedly dispersed in the PE matrix, and the PE crystallinity of PE/clay nanocomposite declines to 15∼30%. Compared with pure PE, PE/clay nanocomposites behave higher thermal, physical and mechanical properties; the layer structure of the clay decreases the polymerization activity and produce polymer with a high molecular weight. For PE/clay nanocomposites, the highest tensile strength of 33.4 MPa and Young's modulus of 477.4 MPa has been achieved when clay content is 7.7 wt %. The maximum thermal decomposition temperature is up to 110 °C higher, but the thermal decomposition temperature of the PE/clay nanocomposites decreases with the increases of the clay contents in the PE matrix.  相似文献   

14.
Fluoro-aramid-based sol/gel-derived nanocomposites were synthesized by condensing a mixture of 4,4′-(hexafluoro-isopropylidene)dianiline and 1,3-phenylenediamine with terephthaloylchloride (TPC) in dimethylacetamide. TPC was added in slight excess to produce amide chains with carbonyl chloride end groups and then replaced with alkoxy groups using aminophenyltrimethoxysilane to develop bonding with the silica network. Mechanical, dynamic mechanical thermal, water absorption and morphological measurements were carried out on the thin hybrid films. Increase in the tensile strength and modulus was observed as compared to pristine polyamide. The thermal decomposition temperature was found in the range of 400–500 °C. The water absorption was found to be reduced with higher silica content. The glass transition temperature and the storage moduli increased with increasing silica concentration. The maximum increase in the T g value (345 °C) was observed with 20 wt% silica. Scanning electron microscopy revealed the uniform distribution of silica in the matrix with an average particle size ranging from 8 to 50 nm.  相似文献   

15.
Bio‐based nanocomposite films were successfully developed using cellulose whiskers as the reinforcing phase and chitosan as the matrix. Cellulose whiskers, with the lengths of 400 ± 92 nm and diameters of 24 ± 7.5 nm on average, were prepared by hydrolyzing cotton linter with sulfuric acid solution. The effects of whisker content on the structure, morphology and properties of the nanocomposite films were characterized by SEM, XRD, FTIR, UV‐vis spectroscopy, DMA, TG, tensile testing, and swelling experiment. The results indicated that the nanocomposites exhibited good miscibility, and strong interactions occurred between the whiskers and the matrix. With increasing whisker content from 0 to 15–20 wt %, the tensile strength of the composite films in dry and wet states increased from 85 to 120 MPa and 9.9 to 17.3 MPa, respectively. Furthermore, the nanocomposite films displayed excellent thermal stability and water resistance with the incorporation of cellulose whiskers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1069–1077, 2009  相似文献   

16.
The loading effect of precipitated silica (PSi) and fly ash‐based silica (FASi) on mechanical properties of natural rubber/chloroprene (NR/CR) under thermal and thermal‐oil ageing was investigated with variation in NR content in the NR/CR blends. The selected results were compared with vulcanized NR/nitrile rubber (NR/NBR) blends. The cure time of CR vulcanizate was found to decrease with increasing NR content, but increased with silica fillers. The Mooney viscosity for CR vulcanizates reduced with increasing NR content. The addition of NR had no effect on tensile modulus and tensile strength for the FASi filled NR/CR, but the opposite trend was observed for the PSi filled NR/CR. The post‐curing effect was more significant in PSi filled NR/CR than in FASi filled NR/CR. The tensile strength of the NR/CR vulcanizates was slightly reduced after thermal ageing especially at high NR content, more extreme reduction being found by thermal‐oil ageing. The elongation at break of NR/CR with both silica fillers ranged from 400 to 900%. The hardness results were similar to the tensile modulus. The addition of PSi in NR/CR considerably increased the tear strength, but less pronounced effect was found for FASi. The resilience properties of NR/CR tended to decrease with increasing silica content. The compression set became poorer when NR content was increased. The PSi showed higher improvement in compression set than the FASi. The effects of silica and ageing on the mechanical properties for NR/CR vulcanizates were similar to those for NR/NBR vulcanizates. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Hybrid organic-inorganic composites were prepared by precipitating silica into hydroxypolybenzoxazole (HPBO) and sulfopolybenzobisthiazole (SPBT) polymers, with interfacial bonding between the phases improved by use of isocyanatopropyltriethoxy silane and N, N-diethylaminopropyltrimethoxy silane, respectively. The materials were transparent, and scanning electron micrographs indicated a uniform distribution of silica particles of domain sizes less than 1 m. Values of the tensile modulus and tensile strength of the HPBO-silica composites were found to increase with the silica content. Values of the modulus of the SPBT-silica composites also increased in this manner, but the improvements in tensile strength were nearly independent of the amount of silica. The composites exhibited thermal decomposition temperatures of approximately 400–500°C, and the thermal stability was significantly increased for both HPBO and SPBT materials with increase in silica content. The water absorption amount for both types of composites decreased significantly compared to that of the pure polymers, suggesting excellent weatherability.  相似文献   

18.
聚酰亚胺/二氧化硅纳米尺度复合材料的研究   总被引:72,自引:0,他引:72  
通过正硅酸乙酯(TEOS)在聚酰胺酸(PAA)的N,N’ 二甲基乙酰胺(DMAc),溶液中进行溶胶 凝胶反应,制备出不同二氧化硅含量的聚酰亚胺/二氧化硅(PI/SiO2)复合薄膜材料.二氧化硅含量低于10wt%的样品是透明浅黄色薄膜;二氧化硅含量高于10wt%的样品是不透明棕黄色薄膜.利用红外光谱、扫描电镜、热失重分析、动态力学分析、热膨胀系数测试和应力 应变测试等方法研究了此类材料的结构与性能.结果表明,PI/SiO2纳米复合材料具有较聚酰亚胺更高的热稳定性和更高的模量;线膨胀系数显著降低;拉伸强度和断裂伸长随二氧化硅含量而变化,分别在10wt%和30wt%附近出现最大值  相似文献   

19.
A series of UV-curable nanocomposite coating materials were prepared by sol–gel technique from tetraethoxysilane (TEOS), methacryloxypropyltrimethoxysilane (MAPTMS) in the presence of urethane acrylate resin based on polyethylene glycol 400 (PEG400). The sol–gel precursor content in the hybrid coatings was varied from 0 to 30 wt.%. In addition, acrylated phenylphosphine oxide oligomer (APPO) is replaced with urethane acrylate resin in order to investigate its effect on the nanocomposite property. The physical and mechanical properties such as; gel content, hardness, adhesion, gloss, impact strength as well as tensile strength were examined. Results from these measurements showed that all the properties of the hybrid coatings improved effectively by gradual increase in sol–gel precursor and APPO resin content. The real time infrared technique was used to follow the degree of acrylic double bond conversion. The thermal stabilities of the UV-cured nanocomposites were investigated by thermogravimetric analysis. The results revealed that the addition of sol–gel precursor and APPO oligomer into the organic network leads to an improvement in the thermal and flame resistance properties of the hybrid materials. It was also determined that the APPO containing hybrid coating with 20 wt.% silica content gave higher char yield than the coating without APPO. It is a desirable achievement to improve simultaneously both the flame retardancy and mechanical properties of a protective coating. SEM studies indicated that inorganic particles were dispersed homogenously through the organic matrix. The hybrids were nanocomposite. It was also found that, incorporation of APPO resin might govern the silica organization and this leading to formation of nanofibrillar structure.  相似文献   

20.
This article describes the synthesis of modified silica nanoparticles (SiO2-MPTMS) via the condensation reaction carried out between silanol moieties of silica nanoparticles and the trialkoxy silyl groups of (3-mercaptopropyl) trimethoxysilane (MPTMS). Then, SiO2-MPTMS nanoparticles in certain amounts (0.5 wt %, 1 wt %, 2.5 wt % and 5 wt %) were incorporated into thiol-ene resins consisting of bisphenol A glycerolate dimethacrylate and trimethylolpropane tris(3-mercaptopropionate) to prepare nanocomposite films via the photoinitiated thiol-ene polymerization in presence of 2,2-Dimethoxy-2-phenylacetophenone 99% as a photoinitiator. Fourier transform infrared spectroscopy, dynamic light scattering, scanning transmission electron microscopy, thermal gravimetric analyzer, and X-ray photoelectron spectrometer were employed to characterize SiO2-MPTMS nanoparticles. It was revealed that the nanosilica surface was successfully grafted by MPTMS with the grafting ratio of 22.9%. Properties of the nanocomposite films such as decomposition temperature, thermal glass transition temperature, tensile strength, hardness, and particle distribution were investigated and the results were compared with each other and neat film. The addition of MPTMS-modified silica particles did not improve the thermal stability of the films. In scanning electron microscopy study, it was seen that 2.5 wt % of these nanoparticles used as additives were about 200 nm in size and dispersed homogeneously in the polymer matrix. The increase in tensile strength of nanocomposite films compared to the neat film was measured as 77.3% maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号