首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grain yield (GY) is a direct function of its components and these traits to being less complex and highly correlated with yield. The objectives of this study were to map Quantitative Trait Loci (QTL) for GY and its components in maize lines and GY in their testcrosses, to verify its congruence and the possibility to select testcrosses from the predict means of the lines by using markers information. Two hundred and fifty-six S1 lines derived from the cross L-08-05F × L-14-04B of tropical germplasm and the testcrosses of these lines with two testers were evaluated in six environments. The traits analysed in the lines were GY, prolificacy, ear height and diameter, number of rows per ear and kernels per row, kernel depth, grain weight, and GY in the testcrosses. QTL were mapped in the lines and in testcrosses and the predicted means of the lines were computed based on QTL effects and in all markers of the genome. Few QTL detected for GY and its components in the lines were coincident with the QTL for yield in testcrosses. The correlations between the predicted means of the lines and the phenotypic means of the testcrosses were not significant or low for most of the components. The coincidence of the selected lines and testcrosses was very low for all traits and the results were similar for both testcrosses and intensity. It is not possible to select testcrosses by using GY or its components information from the lines, even with the aid of molecular markers.  相似文献   

2.
Gibberella ear rot (GER) of maize caused by Fusarium graminearum reduces grain yield and leads to contamination of the grains with deoxynivalenol (DON), a mycotoxin that adversely affects the health of humans and animals. The objectives of this study were to (1) analyze means and genotypic variances for line per se performance (LP) and testcross performance (TP) of doubled haploid (DH) lines for GER severity and DON concentration as well as for some agronomic traits, (2) examine correlations among these traits, (3) validate QTL for resistance detected in previous studies for LP and their effect on TP and (4) investigate the relative efficiency of indirect selection (RE) for LP to improve TP. Testcross progenies of 94 DH lines originating from four flint populations were developed using a susceptible dent tester as pollinator. Artificial inoculations with F. graminearum led to appreciable disease development. Average TP for GER severity and DON concentration were lower than the mean mid-parent values of the tester and DH lines, indicating mid-parent heterosis for resistance. Genotypic variation for resistance was significant for LP and TP. Genotypic correlations between LP and TP were low and resistance QTL for LP had no significant effects on TP. Accordingly, RE for resistance was low, suggesting to allocate resources mostly to the evaluation of testcrosses. Correlations of resistance to GER and DON contamination with grain yield (measured under non-inoculated conditions) were not significant, indicating that selection for resistance and higher grain yield can be carried out simultaneously.  相似文献   

3.
Degree of the association between line per se performance (LP) and testcross performance (TP) is important in breeding programs and simultaneous improvement of commercial hybrids and their parental lines. This experiment was designed to study genetic variability and genetic correlation for several agronomic traits in two maize (Zea mays L.) broad-based populations (NS12-SG and NS14-SG). Independent trials with 80 entries of S1 progenies as well as their testcrosses were arranged according to an incomplete block design with replicates in sets. Grain yield, stay green, anthesis-silking interval, stalk water content and grain moisture were evaluated in four environments. The anthesis-silking interval had the highest genetic variation, followed by stay green. High heritability estimates (>0.50) for all traits, pointed out that further selection would be possible. Genetic correlations between line per se and testcross performance were lowest for grain yield (0.396** and 0.592**, for NS12-SG and NS14-SG, respectively), and highest for grain moisture (0.937** and 0.821**, respectively). High correlations between line per se and their testcrosses for stay green, anthesis-silking interval, stalk water content and grain moisture indicated that additive gene action might be more important than dominance in controlling the expression of these traits.  相似文献   

4.
A doubled haploid (DH) population of 125lines derived from IR64 × Azucena, an indicajaponica cross were grown in three different locations in India during the wet season of 1995. The parents of mapping population had diverse phenotypic values for the eleven traits observed. The DH lines exhibited considerable amount of variation for all the traits. Transgressive segregants were observed. Interval analysis with threshold LOD > 3.00 detected a total of thirty four quantitative trait loci (QTL) for eleven traits across three locations. The maximum number of twenty QTL were detected at Punjab location of North India. A total of seven QTL were identified for panicle length followed by six QTL for plant height. Eight QTL were identified on three chromosomes which were common across locations. A maximum of seven QTL were identified for panicle length with the peak LOD score of 6.01 and variance of 26.80%. The major QTL for plant height was located on Chromosome 1 with peak LOD score of 16.06 flanked by RZ730-RZ801 markers. Plant height had the maximum number of common QTL across environment at the same marker interval. One QTL was identified for grain yield per plant and four QTL for thousand grain weight. Clustering of QTL for different traits at the same marker intervals was observed for plant height, panicle exsertion, panicle number, panicle length and biomass production. This suggests that pleiotropism and or tight linkage of different traits could be the plausible reason for the congruence of several QTL. Common QTL identified across locations and environment provide an excellent opportunity for selecting stable chromosomal regions contributing to yield and yield components to develop QTL introgressed lines that can be deployed in rice breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
B. Kjær  J. Jensen 《Euphytica》1996,90(1):39-48
Summary The positions of quantitative trait loci (QTL) for yield and yield components were estimated using a 85-point linkage map and phenotype data from a F1-derived doubled haploid (DH) population of barley. Yield and its components were recorded in two growing seasons. Highly significant QTL effects were found for all traits at several sites in the genome. A major portion of the QTL was found on chromosome 2. The effect of the alleles in locus v on thousand grain weight and kernels per ear explained 70–80% of the genetic variation in the traits. QTL × year interaction was found for grain yield. Several different QTL were found within the two-rowed DH lines compared to those found in the six-rowed DH lines. Epistasis between locus v and several loci for yield and yield components indicates that genes are expressed differently in the two ear types. This may explain the difficulties of selecting high yielding lines from crosses between two-rowed and six-rowed barley.Abbreviations DH doubled haploid - QTL quantitative trait locus/loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - T. Prentice Tystofte Prentice - V. Gold Vogelsanger Gold  相似文献   

6.
Summary The aim of this investigation was to map quantitative trait loci (QTL) associated with grain yield and yield components in maize and to analyze the role of epistasis in controlling these traits. An F2:3 population from an elite hybrid (Zong3 × 87-1) was used to evaluate grain yield and yield components in two locations (Wuhan and Xiangfan, China) using a randomized complete-block design. The mapping population included 266 F2:3 family lines. A genetic linkage map containing 150 simple sequence repeats and 24 restriction fragment length polymorphism markers was constructed, spanning a total of 2531.6 cM with an average interval of 14.5 cM. A logarithm-of-odds threshold of 2.8 was used as the criterion to confirm the presence of one QTL after 1000 permutations. Twenty-nine QTL were detected for four yield traits, with 11 of them detected simultaneously in both locations. Single QTL contribution to phenotypic variations ranged from 3.7% to 16.8%. Additive, partial dominance, dominance, and overdominance effects were all identified for investigated traits. A greater proportion of overdominance effects was always observed for traits that exhibited higher levels of heterosis. At the P ≤ 0.005 level with 1000 random permutations, 175 and 315 significant digenic interactions were detected in two locations for four yield traits using all possible locus pairs of molecular markers. Twenty-four significant digenic interactions were simultaneously detected for four yield traits at both locations. All three possible digenic interaction types were observed for investigated traits. Each of the interactions accounted for only a small proportion of the phenotypic variation, with an average of 4.0% for single interaction. Most interactions (74.9%) occurred among marker loci, in which significant effects were not detected by single-locus analysis. Some QTL (52.2%) detected by single-locus analysis were involved in epistatic interactions. These results demonstrate that digenic interactions at the two-locus level might play an important role in the genetic basis of maize heterosis.  相似文献   

7.
QTL遗传效应正反交差异研究   总被引:2,自引:3,他引:2  
应用改良AD模型对转基因棉花QTL突变体系进行遗传效应的正反交比较分析,结果表明,农艺性状的主要遗传方差组分分解正反交表现一致,除铃重存在显著的遗传背景加性效应(A2)外,子棉产量、皮棉产量、衣分和铃数均存在显著或极显著的 dQTL加性效应(A1)和显性效应(D1),农艺性状均有显著或极显著的遗传背景显性效应(D2);棉花纤维性状的主要遗传效应正反交之间无显著差异.铃重的dQTL的加性和显性效应与环境的互作存在显著差异.对转基因系、受体及三个品系的dQTL加性效应分解结果也表明,正反交对不同材料各性状的加性效应估计也是一致的.本文还对不同组合正反交时的纯合及杂合显性效应进行预测比较.  相似文献   

8.
玉米产量性状“一致性QTL”分析   总被引:3,自引:0,他引:3  
在构建含221个玉米产量性状QTL整合图谱的基础上,采用元分析方法,当LOD值≥4.0时,在第2染色体上确定了1个控制粒重和穗数的“一致性QTL”,介于标记Sdg107和Isu2117b之间,间距30.99 cM;同样,在第3和第4染色体上发掘了2个控制穗数和粒重的“一致性QTL”,分别由标记ucsd72d和IDP37...  相似文献   

9.
The European com borer (ECB) Ostrinia nubilalis H. is a major pest in World maize Zea mays L. production. Objectives of this study were to (1) investigate the genotypic variance and covariance in testcrosses of European flint and dent inbreds for ECB resistance and agronomic traits, and (2) estimate the correlation between line per se and testcross performance for ECB resistance traits. A total of 16 flint and 24 dent inbreds and their testcrosses with two testers from the opposite germplasm pool were evaluated in four and three German environments, respectively. Using artificial infestation with ECB larvae, resistance was assessed by damage rating of stalks, tunnel length in dissected stalks, and relative yield of infested plots compared with protected plots. Yield losses due to ECB damage in testcross hybrids amounted to 40%. Significant genotypic variances between flint and dent lines and high heritabilities were found for damage rating of stalks for both line per se and testcross performance. Heritabilities were low or intermediate for tunnel length and relative grain yield. Correlations between line per se and testcross performance were tight for the damage rating of stalks and moderate for tunnel length and relative yield in both flint and dent germplasm. For damage rating of stalks, per se performance of lines tested in a few environments can be used to predict their testcross performance. In contrast, assessment of testcross performance for tunnel length and relative yield requires evaluating testcrosses with several testers in multi-environment trials.  相似文献   

10.
玉米产量及产量相关性状QTL的图谱整合   总被引:10,自引:1,他引:9  
王帮太  吴建宇  丁俊强  席章营 《作物学报》2009,35(10):1836-1843
利用生物信息学方法,借助高密度分子标记遗传图谱IBM2 2008 neighbors,利用图谱映射和元分析的方法,对不同试验中定位的400个玉米产量及产量相关性状QTL进行了图谱整合,构建了玉米产量及产量相关性状QTL的综合图谱和一致性图谱。结果表明,玉米产量及产量相关性状QTL在10条染色体上呈非均匀分布,第1染色体上最多,第10染色体上最少;发掘出96个玉米产量及产量相关性状的“一致性”QTL;关联性较强的产量性状的QTL常集中在相同或相近的座位上。  相似文献   

11.
Summary Maize (Zea mays L.) breeders are interested in the effects of recurrent selection for grain yield on other traits. Changes in plant traits could alter agronomic acceptability of the populations under selection, and observed improvements in grain yield could be explained by changes in ear traits. We evaluated changes in combining ability for plant and ear traits of BS10(FR), BS11(FR), BSSS(R), BSCB1(R), and Lancaster Surecrop associated with recurrent selection for grain yield.Recurrent selection procedures generally did not change plant and ear heights or date of silking of testcrosses of populations or of the population crosses, BS10(FR)×BSS11(FR) and BSSS(R)×BSCB1(R). Grain yield improvements, however, were associated with increases in ear-sink size.Journal Paper No. J 9517 of the Iowa Agriculture and Home Economics Exp. Stn., Ames, Iowa. Project 2152.  相似文献   

12.
Despite the well-recognized importance of grain yield in high-oil maize (Zea mays L.) breeding and production, few studies have reported the application of QTL mapping of such traits. An inbred line of high-oil maize designated ‘GY220’ was crossed with two dent maize inbred lines to generate two connected F2:3 populations with 284 and 265 F2:3 families. Our main objective was to evaluate the influence of genetic background on QTL detection of grain yield traits through comparisons between the F2:3 populations. The field experiments were conducted during the spring in Luoyang and summer in Xuchang, Henan, China. Two genetic linkage maps were constructed with a genetic distance of 2111.7 and 2298.5 cM using 185 and 173 polymorphic SSR markers, respectively. In total, 18 and 15 QTL were detected for six grain yield traits in the two populations. Only one common QTL marker was shared between the two populations. A QTL cluster associated with five traits was identified at bin 1.05–1.06, including the shared QTL for 100GW, which demonstrated the largest effect (16.7%). Among the detected QTL, 12 digenic interactions were identified. Our results reflect the substantial influence of dent maize genetic background on QTL detection of grain yield traits.  相似文献   

13.
T. Q. Zheng  J. L. Xu  Z. K. Li    H. Q. Zhai    J. M. Wan 《Plant Breeding》2007,126(2):158-163
Rice milling quality is the final part of grain yield making it fit for eating and a complex trait that remains poorly understood genetically. Three components of rice milling quality, i.e. brown rice rate, milled rice rate and head rice rate and related rice grain shape traits were genetically dissected by the QTL mapping approach using a set of 231 random rice introgression lines and 160 SSR markers. A total of 10 genomic regions were found to be associated with rice grain shape and milling quality traits. Of these, one major QTL on chromosome 7 had large effects on rice grain shape and milling quality and was detected consistently in several related populations of rice, which offers an opportunity for marker‐aided improvement of rice milling quality and QTL cloning.  相似文献   

14.
Grain yield is the most important and complicated trait in maize. In this study, a total of 498 recombinant inbred lines (RIL) derived from a biparental cross of two elite inbred lines, 178 and P53, were grown in six different environments. Quantitative trait locus (QTL) mapping was conducted for three grain yield component traits (100 grain weight, ear weight and kernel weight per plant). Subsequently, meta‐analysis was performed after a comprehensive review of the research on QTL mapping for grain weight (100, 300 and 1000) using BioMercator V4.2. In total, 62 QTLs were identified for 100 grain weight, ear weight and kernel weight per plant in six environments. Forty‐three meta‐QTLs (MQTLs) were detected by meta‐analysis. A total of 13 candidate genes homologous to eight functionally characterized rice genes were found, and four candidate genes were located in the two hot spot regions of MQTL1.5 and MQTL2.3. Our results suggest that the combination of literature collection, meta‐analysis and homologous blast searches can offer abundant information for further fine mapping, marker‐assisted selection (MAS) breeding and map‐based cloning for maize.  相似文献   

15.
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross procedure.  相似文献   

16.
Development of maize (Zea mays L.) types that produce leaf area and mature quickly would increase production of maize in mid- to short-season areas. The leafy (Lfy1) and reduced-stature (rd1) traits both make contributions to this end. However, these two traits have not previously been combined. Our objective was to evaluate the yield and yield components of non-leafy normal-stature (NLNS), leafy reduced-stature (LRS), non-leafy reduced-stature (NLRS), and leafy normal-stature (LNS) maize inbred lines. The two genes, ‘Lfy1’ and ‘rd1’, were incorporated into a series of inbred lines resulting in a range of canopy architectures. Ten variables were recorded for each of 30 inbred lines over three years. The 10 variables were: corn heat unit requirement from planting to tasselling, corn heat unit requirement from planting to silking, days between tasselling and silking, grain moisture content, husk dry weight, cob dry weight, ear length, maximum ear circumference, grain yield and ratio of grain yield to moisture content. Reduced-stature inbred lines reached anthesis more quickly than normal-stature inbred lines. Grain moisture content was less in reduced-stature inbred lines than normal stature trait groups. Leafy-reduced stature plants had the highest ratio of grain to moisture content and the lowest grain moisture content at harvest. Inbred lines containing the rd1 trait matured more rapidly than other trait groups. The LRS trait group yielded more than the other groups, and showed great potential for use in mid- to short-season environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
对ZZ4完成了4轮MS1-HS和MS1选择.结果表明,经4轮选择的群体,两种方法均有效地保留了各主要性状的遗传方差.MS1-HS选择的群体遗传方差下降速率更慢,C4群体的单株籽粒产量的遗传方差仅减少3.7%.穗长、穗粗、粒行数、行粒数、出籽率、百粒重的遗传方差的变化与单株籽粒产量一致,MS1C4的遗传方差减少了8%~15%,MS1-HSC4的遗传方差仅减少了4%~15%.株高、穗位高、抽丝期、植株保绿度、抗倒性等相关选择性状的遗传方差的变化与产量性状基本一致.MS1-HS法对改良玉米群体籽粒产量与测验种间的特殊配合力十分有效,呈逐轮上升的趋势;改良群体与测验种综系140间的杂交后代产量平均每轮提高6%,杂种优势平均每轮提高6.9%.两种方法在改良群体产量性状一般配合力方面,均得到了良好的效果.同时,穗部性状及株高、穗位、抽丝期、散粉期、抗性等田间农艺性状的一般配合力也获得了同步改良.通过ZZ4改良群体与6个测验种间杂交组合产量及杂种优势的比较研究,得出ZZ4与黄早四类种质为杂种优势模式对.  相似文献   

18.
A quantitative trait loci (QTL) analysis of grain yield and yield-related traits was performed on 93 durum wheat recombinant inbred lines derived from the cross UC1113 × Kofa. The mapping population and parental lines were analyzed considering 19 traits assessed in different Argentine environments, namely grain yield, heading date, flowering time, plant height, biomass per plant, and spikelet number per ear, among others. A total of 224 QTL with logarithm of odds ratio (LOD) ≥ 3 and 47 additional QTL with LOD > 2.0 were detected. These QTL were clustered in 35 regions with overlapping QTL, and 12 genomic regions were associated with only one phenotypic trait. The regions with the highest number of multi-trait and stable QTL were 3BS.1, 3BS.2, 2BS.1, 1BL.1, 3AL.1, 1AS, and 4AL.3. The effects of epistatic QTL and QTL × environment interactions were also analyzed. QTL putatively located at major gene loci (Rht, Vrn, Eps, and Ppd) as well as additional major/minor QTL involved in the complex genetic basis of yield-related traits expressed in Argentine environments were identified. Interestingly, the 3AL.1 region was found to increase yield without altering grain quality or crop phenology.  相似文献   

19.
Drought stress is thought to promote epicuticular wax accumulation on maize leaves, which reduces plant water loss. We evaluated 62 maize inbred lines and their hybrid testcross progeny for epicuticular wax accumulation on flag leaves at flowering under full and limited irrigation regimes. Extracted wax was measured as a percentage of wax weight to leaf weight (WLW) and leaf area (WLA). Eleven genotypes had above average WLW as both inbred lines and hybrid testcrosses. Thirteen genotypes had above average WLA as either inbred lines or hybrid testcrosses. The drought treatment did not significantly alter WLW or WLA. Heritability of WLW was 0.17 (inbred lines) and 0.58 (hybrid testcrosses). Heritability of WLA was 0.41 (inbred lines) and 0.59 (hybrid testcrosses), suggesting it is a better trait than WLW for epicuticular wax screening. Correlations (r) between inbred lines and their testcross progeny were 0.44 and 0.18, for WLW and WLA, respectively. Heritability of grain weight per ear and plot yield was highest in hybrid testcrosses, with no correlation between inbred and hybrid germplasm. It is not warranted to evaluate epicuticular wax accumulation as the sole drought tolerance mechanism. However, it may be a good secondary trait to observe in relation to grain yield production in hybrids tested under water‐limiting conditions.  相似文献   

20.
水稻剑叶角度与主穗产量的遗传剖析   总被引:2,自引:0,他引:2  
理想水稻株型的选育与高产育种密切相关,而剑叶角度则是构成水稻理想株型的重要指标之一,同时也是影响水稻产量的重要因素。合理开发利用水稻中控制剑叶角度及产量相关的数量性状基因座位(QTL),并结合分子育种技术,可更好地为高产制繁种目标服务。通过应用由244个株系组成的珍汕97B/密阳46重组自交系(RIL)群体,构建含256个分子标记的连锁图谱,采用QTL区间作图法对剑叶角度及主穗产量等5个性状进行定位分析,共检测到17个QTL,分布于染色体1、2、3、5、6、9、10、11。这些QTL对相应性状的贡献率介于3.46%~25.64%之间。在第1染色体上检测到控制5个性状的QTL,其中控制剑叶角度的两个QTL;在第2、3、9、10、11染色体上分别检测到各一个QTL;第5染色体上检测到控制剑叶、每穗总粒数和每穗实粒数的3个QTL;1个每穗实粒数和2个每穗实粒重的QTL分布于第6染色体上。多个区间表现出对两个性状的显著作用,其中第1染色体2个,第6染色体1个。相关性分析表明,较小的剑叶角度可通过提高结实率进而显著增加产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号