首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The pH dependence of the proton NMR spectrum of [Asn1, Val5] angiotensin II in aqueous solution shows the existence of one major and one minor conformation above pH 6.5, the minor conformation representing 12 +/- 2% of the total peptide. A similar observation has been made for (Asn1, Val5) angiotensin I and Val-Tyr-Val-His-Pro-Phe. This effect is not due to the presence of angiotensin-like impurities in the peptide samples. We have shown two expected impurities, [beta-Asp1, Val5] angiotensin II and [Asn1, 3-Bzl-Ty4, Val5] - angiotensin II, to be absent, and a third impurity [Asn1, Val5, D-His6] angiostensin II, to be present at less than or equal to 2.1 mol%, too little to account for the observed amount (12 +/- 2%) of minor conformation. The carbon-13 spectrum of the hexapeptide at high pH shows that the major conformation has Pro7 in the trans form and the minor conformation has Pro7 in the cis form.  相似文献   

3.
4.
(31)P NMR spectroscopy offers a possibility to obtain a survey of all low-molecular-weight phosphorylated compounds in yeast. The yeast cells have been extracted using chloroform into a neutral aqueous phase. The use of high fields and the neutral pH extracts, which are suitable for NMR analysis, results in well-resolved (31)P NMR spectra. Two-dimensional NMR experiments, such as proton-detected heteronuclear single quantum ((1)H-(31)P HSQC) and (31)P correlation spectroscopy ((31)P COSY), have been used to assign the resonances. In the phosphomonoester region many of the signals could be assigned to known metabolites in the glycolytic and pentose phosphate pathways, although some signals remain unidentified. Accumulation of ribulose 5-phosphate, xylulose 5-phosphate, and ribose 5-phosphate was observed in a strain lacking transketolase activity when grown in synthetic complete medium. No such accumulation occurred when the cells were grown in yeast-peptone-dextrose medium. Trimetaphosphate (intracellular concentration about 0.2 mM) was detected in both cold methanol-chloroform and perchloric acid extracts.  相似文献   

5.
Fermenting anaerobic cultures of Escherichia coli were observed by the nonintrusive technique of in vivo, whole-culture nuclear magnetic resonance. Fermentation balances were calculated for hexoses, pentoses, sugar alcohols, and sugar acids. Substrates more reduced than glucose yielded more of the highly reduced fermentation product ethanol, whereas more-oxidized substrates produced more of the less-reduced fermentation product acetate. These relationships were made more obvious by the introduction of ldhA mutations, which abolished lactate production, and delta frd mutations, which eliminated succinate. When grown anaerobically on sugar alcohols such as sorbitol, E. coli produced ethanol in excess of the amount calculated by the standard fermentation pathways. Reducing equivalents must be recycled from formate to account for this excess of ethanol. In mutants deficient in hydrogenase (hydB), ethanol production from sorbitol was greatly decreased, implying that hydrogen gas released from formate by the formate-hydrogen lyase system may be partially recycled, in the wild type, to increase the yield of the highly reduced fermentation product ethanol.  相似文献   

6.
J L Dimicoli  J Bieth  J M Lhoste 《Biochemistry》1976,15(10):2230-2236
Trifluoroacetyl di- and tripeptides have been synthesized in order to investigate their interactions with elastase by proton and fluorine magnetic resonance. These substituted peptides behave as substrates or inhibitors of the enzyme, depending upon their length. They are hydrolyzed with production of trifluoracetic acid and unsubstituted parent peptides exclusively. The amino acid specificity observed and the absence of hydrolysis in the presence of an enzyme substituted at the serine residue of the active site indicate that the trifluoracetic hydrolysis occurs at this site. It requires the fixation of the C-terminal amino acids at the two S' subsites, as does the peptidic hydrolysis of unsubstituted or acetylated oligoalanines. Trifluoracetyl tripeptides exhibit a much higher affinity for the protein, as compared with the unsubstituted or acetylated peptides as well as compared with the trifluoroacetyl dipeptides, and they act as powerful inhibitors of the enzyme. The inhibitory binding mode has been shown to involve the fixation of the trifluoroacetyl group at subsite S4 or in its vicinity, allowing for the cooperative fixation of the C-terminal alanine at S1 and the accommodation of a transproline at S2.  相似文献   

7.
Two-dimensional NMR techniques were utilized to determine the secondary structural elements of endothelin-1 (ET-1), a potent vasoconstrictor peptide, and two of its point mutants, Met-7 to Ala-7 (ETM7A), and Asp-8 to Ala-8 (ETD8A) in acetic acid-d3/water solution. Sequence specific NMR assignments were determined for all three peptides, as well as chemical shifts and NOE connectivity patterns. The chemical shifts of ET-1 and ETM7A are identical (+/- 0.05 ppm) except for the site of substitution, whereas marked shift changes were detected between ET-1 and ETD8A. These chemical shift differences imply that the Asp-8 to Ala-8 mutation has induced a conformational change relative to the parent conformation. All three molecules show the same basic nuclear Overhauser effect (NOE) pattern, which suggests that the gross conformation of all three molecules is the same. Small changes in sequential NOE intensities and changes in medium-range NOE patterns indicate that there are subtle conformational differences between ET-1 and ETD8A.  相似文献   

8.
31P nuclear magnetic resonance spectra recorded from intact muophosphate, and the sugar phosphates. Quantitation of these metabolites by 31P nuclear magnetic resonance was in good agreement with values obtained by chemical analyses. The spectra obtained from various muscles showed considerable variation in their phosphorus profile. Thus, differences could be detected between (a) normal and diseased muscle; (b) vertebrates and invertebrates; (c) different species of the same animal. The time course of change in phosphate metabolites in frog muscle showed that ATP level remains unchanged until phosphocreatine is nearly depleted. Comparative studies revealed that under anaerobic conditions the Northern frog maintains its ATP content for 7 hours, while other types of amphibian, bird, and mammalian muscles begin to show an appreciable decay in ATP after 2 hours. Several lines of evidence indicated that ATP forms a complex with magnesium in the muscle water: (a) the phosphate resonances of ATP in the muscle were shifted downfield as compared to those in the alkaline earth metal-free perchloric acid extract of the muscle; (b) the coupling constants of ATP measured in various live muscles closely corresponded to those for MgATP in a solution resembling the composition of the muscle water; (c) in the muscle the gamma-phosphate group of ATP exhibited no shift change over a period of 10 hours under conditions where resonances of other phosphate compounds could be titrated. This behavior is similar to that of MgATP in model solutions in the physiological pH range, and it is different from that of CaATP. The chemical shifts of the phosphate metabolites were determined in several relevant solutions as a function of pH. Under all conditions only inorganic orthophosphate showed an invariant titration curve. From the chemical shift of inorganic phosphate observed during aging of intact muscle the intracellular pH of frog muscle was estimated to be 7.2.  相似文献   

9.
The interaction between influenza virus hemagglutinin and its cell-surface receptor, 5-N-acetylneuraminic acid (sialic acid), was probed by the synthesis of 12 sialic acid analogs, including derivatives at the 2-carboxylate, 5-acetamido, 4-, 7-, and 9-hydroxyl, and glycosidic positions. The equilibrium dissociation constants of these analogs were determined by nuclear magnetic resonance spectroscopy. Ligand modifications that reduced or abolished binding included the replacement of the 2-carboxylate with a carboxamide, the substitution of azido or N-benzyloxycarbonyl groups for the 5-acetamido group, and the replacement of the 9-hydroxyl with amino or O-acetyl moieties. Modifications having little effect on binding included the introduction of longer chains at the 4-hydroxyl position, the replacement of the acetamido methyl group with an ethyl group, and the removal of the 7-hydroxyl group. X-ray diffraction studies yielded 3 A resolution crystal structures of hemagglutinin in complex with four of the synthetic analogs [alpha-2-O-methyl-, 4-O-acetyl-alpha-2-O-methyl-, 9-amino-9-deoxy-alpha-2-O-methyl-, and alpha-2-O-(4'-benzylamidocarboxybutyl)-N-acetylneuraminic acid] and with the naturally occurring cell-surface saccharide (alpha 2-3)sialyllactose. The X-ray studies unambiguously establish the position and orientation of bound sialic acid, indicate the position of the lactose group of (alpha 2-3)sialyllactose, and suggest the location of an alpha-glycosidic chain (4'-benzylamidocarboxybutyl) that increases the binding affinity of sialic acid by a factor of about 3. Although the protein complexed with alpha-2-O-methylsialic acid contains the mutation Gly-135-->Arg near the ligand binding site, the mutation apparently does not affect the ligand's position. The X-ray studies allow us to interpret the binding affinities in terms of the crystallographic structure. The results suggest further experiments which could lead to the design of tight binding inhibitors of possible therapeutic value.  相似文献   

10.
The binding of Ni-2+ and Mn-2+ to thiamin phosphate and thiamin pyrophosphate (thiamin-PP) has been compared with the binding of these ions to oxythiamin phosphate and oxythiamin pyrophosphate, analogues of thiamin in which the C-4 amino group has been replaced by an -OH group. The replacement of the NH2 group results in reduced basicity of N-1 of the pyrimidine ring of oxythiamine derivatives. The effects of pD, ligand concentration, and temperature on the binding of metal ions to N-1 have been studied by observing the metal ion-induced shifting and broadening of the C-6-H signal of these compounds. The results indicate the following: (a) the metal ion is held near N-1, resulting in a "folded" conformation, because of a favorable bonding interaction between N-1 and the metal ion rather than for general conformational reasons alone; and (b) the amount of "folded" conformation present in the different pyrophosphate complexes at neutral pH follows the order: Ni-2+-thiamin-PP greater than Mn-2+-thiamin-PP greater than Mn-2+-oxythiamin-PP and Ni-2+-oxythiamin-PP It is concluded that the strength of the metal ion-pyrimidine interaction in the "folded" conformation depends strongly both on the coordination affinity of the metal ion and on the basicity of N-1. Since the interaction of the phosphate-bound metal ion with the pyrimidine ring in the Mg-2+-thiamin-PP complex is probably weaker than the corresponding interaction in the Mn-2+-thiamin-PP complex, these results predict that the Mg-2+-thiamin-PP complex in solution, at neutral pH, exists predominantly in an "unfolded" conformation.  相似文献   

11.
12.
13.
1H nuclear magnetic resonance spectra of 1 - (II) and 3-deazaadenosines (III) together with adenosine (I) in dimethylsulfoxide have been examined. Features of coupling constants indicate that the furanose rings of I, II, and III have similar conformational preferences and that conformations about the 4′-C–5′-C bond are preferentially gauche-gauche. Nuclear Overhauser effect and spin-lattice relaxation-time measurements demonstrate that II predominantly adopts the syn-conformation similar to that of I, whereas that of III has a greater anti (freely rotating) component. The results suggest that the syn-conformation in II as well as I is stabilized presumably through a hydrogen bond between the 3-N and 5′-hydroxyl group.  相似文献   

14.
M13 coat protein is a simple integral membrane protein isolated from the filamentous coliphage M13. Isotopic labels (13C and 15N) may be incorporated biosynthetically into the protein backbone. 13C nuclear magnetic resonance spectroscopy of carbonyl carbon atoms and two-dimensional 1H-detected 15N-1H heteronuclear shift correlation of coat protein in dodecylsulphate micelles have shown many residues throughout the protein to give rise to two distinct resonances of equal intensity. Chemical shift differences between the two forms are small, indicating the existence of two slightly different but equally populated conformational states. We suggest that the two conformers correspond to the inequivalent monomers of an asymmetric coat protein dimer and propose a mechanism for the generation of such a dimer.  相似文献   

15.
Phytate hydrolysis was followed through rat gastrointestinal tracts by (31)P nuclear magnetic resonance spectroscopy. No phytate hydrolysis products were detected in the diet, stomach, or small intestine. It was concluded that cecal bacteria were responsible for phytate hydrolysis, which continued in the colon and fecal pellet.  相似文献   

16.
S Schramm  E Oldfield 《Biochemistry》1983,22(12):2908-2913
We show that measurement of the spin-lattice (T1) and spin-spin (T2) relaxation times (or line widths) of irrotationally bound 2H nuclei in macromolecules undergoing isotropic rotational motion outside of the extreme narrowing limit (i.e., for the case omega 02 tau R2 much greater than 1) permits determination of both the rotational correlation time (tau R) of the macromolecule and the electric quadrupole coupling constant (e2qQ/h) of the 2H label. The technique has the advantage over 13C nuclear magnetic resonance (NMR) that no assumptions about bond lengths (which appear to the sixth power in 13C relaxation studies) or relaxation mechanisms need to be made, since relaxation will always be quadrupolar, even for aromatic residues at high field. Asymmetry parameter (eta) uncertainties are shown to cause negligible effects on tau R determinations, and in any case it is shown that both e2qQ/h and eta may readily be determined in separate solid-state experiments. By way of example, we report 2H NMR results on aqueous lysozyme (EC 3.2.1.17) at 5.2 and 8.5 T (corresponding to 2H-resonance frequencies of 34 and 55 MHz). Interpretation of the results in terms of the isotropic rigid-rotor model yields e2qQ/h values of approximately equal to 170 or approximately equal to 190 kHz, respectively, for the imidazolium and free-base forms of [epsilon 1-2H] His-15 lysozyme in solution, in excellent agreement with e2qQ/h values of approximately 167 and approximately 190 kHz obtained for the free amino acids in the solid state. In principle, the method may in suitable cases permit comparison between the dynamic structures of proteins in solution and in the crystalline solid state.  相似文献   

17.
N-Acetyl-L-phenylalaninal exists predominantly in its hydrated form in aqueous solution, but the aldehyde and not the hydrate is shown by nuclear magnetic resonance (NMR) spectroscopy to be the effective inhibitor of alpha-chymotrypsin. NMR spectroscopy also indicates that the initial alpha-chymotrypsin-N-acetyl-L-phenylalaninal complex is in equilibrium with a hemiacetal formed between the aldehyde and the active site serine residue. The rate of the latter equilibration is slow on the NMR time scale but the hemiacetal can be detected by cross-saturation NMR spectroscopy. N-Benzoyl-L-phenylalaninal is a more potent inhibitor of alpha-chymotrypsin than the N-acetyl derivative and both the formation of the enzyme-inhibitor complex and the hemiacetal are slow on the NMR time scale, but the hemiacetal in the enzyme can be detected by cross-saturation NMR spectroscopy. The N-acyl-L-phenylalaninals also bind to N-methylhistidinyl-57-alpha-chymotrypsin, but clear evidence for hemiacetal formation was not obtained by cross-saturation NMR spectroscopy either because the hemiacetal was not formed or more probably because the rate of dissociation was slow compared with the rate of relaxation of the hemiacetal proton. The dissociation constant of N-benzoyl-L-phenylalaninal to dehydroalaninyl-195-alpha-chymotrypsin was found to be high relative to the dissociation constant to native alpha-chymotrypsin, supporting the NMR evidence that a hemiacetal with the Ser-195 is formed on association of N-benzoyl-L-phenylalaninal with alpha-chymotrypsin.  相似文献   

18.
19.
Site-directed mutagenesis was employed to examine the function of two highly conserved residues, Tyr-37 and Arg-41, of human EGF (hEGF) in receptor binding. Both a conservative change to phenylalanine and a semi-conservative change to histidine at position 37 yield proteins with receptor affinity similar to wild-type hEGF. A non-conservative change to alanine results in a molecule with about 40% of the receptor affinity, indicating that an aromatic residue is not essential at this position. Both conservative (to lysine) and non-conservative (to alanine) substitutions at position 41 drastically reduced receptor binding to less than 0.5% of the wild-type activity. 1D-NMR data indicate that the replacement of Arg-41 by lysine does not significantly alter the native protein conformation. Thus, Arg-41 may be directly involved in ligand receptor interaction, whereas the side chain of Tyr-37, although possibly important structurally, is not essential for receptor binding.  相似文献   

20.
Wilder PT  Varney KM  Weiss MB  Gitti RK  Weber DJ 《Biochemistry》2005,44(15):5690-5702
The EF-hand calcium-binding protein S100B also binds one zinc ion per subunit with a relatively high affinity (K(d) approximately 90 nM) [Wilder et al., (2003) Biochemistry 42, 13410-13421]. In this study, the structural characterization of zinc binding to calcium-loaded S100B was examined using high-resolution NMR techniques, including structural characterization of this complex in solution at atomic resolution. As with other S100 protein structures, the quaternary structure of Zn(2+)-Ca(2+)-bound S100B was found to be dimeric with helices H1, H1', H4, and H4' forming an X-type four-helix bundle at the dimer interface. NMR data together with mutational analyses are consistent with Zn(2+) coordination arising from His-15 and His-25 of one S100B subunit and from His-85 and Glu-89 of the other subunit. The addition of Zn(2+) was also found to extend helices H4 and H4' three to four residues similar to what was previously observed with the binding of target proteins to S100B. Furthermore, a kink in helix 4 was observed in Zn(2+)-Ca(2+)-bound S100B that is not in Ca(2+)-bound S100B. These structural changes upon Zn(2+)-binding could explain the 5-fold increase in affinity that Zn(2+)-Ca(2+)-bound S100B has for peptide targets such as the TRTK peptide versus Ca(2+)-bound S100B. There are also changes in the relative positioning of the two EF-hand calcium-binding domains and the respective helices comprising these EF-hands. Changes in conformation such as these could contribute to the order of magnitude higher affinity that S100B has for calcium in the presence of Zn(2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号