首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Udupi coast in Karnataka state, along the west coast of India, selected as a study area, is well known for sandy beaches, aquaculture ponds, lush greenery, temples and major and minor industries. It lies between 13°00′00″–13°45′00″ north latitudes and 74°47′30″–74°30′00″ east longitudes, the length of the coastline is 95 km, and is oriented along the NNW–SSE direction. It is vulnerable to accelerated sea level rise (SLR) due to its low topography and its high ecological and touristy value. The present study has been carried out with a view to calculate the coastal vulnerability index (CVI) to know the high and low vulnerable areas and area of inundation due to future SLR, and land loss due to coastal erosion. Both conventional and remotely sensed data were used and analysed through the modelling technique and by using ERDAS Imagine and geographical information system software. The rate of erosion was 0.6018 km2/yr during 2000–2006 and around 46 km of the total 95 km stretch is under critical erosion. Out of the 95 km stretch coastline, 59% is at very high risk, 7% high, 4% moderate and 30% in the low vulnerable category, due to SLR. Results of the inundation analysis indicate that 42.19 km2 and 372.08 km2 of the land area will be submerged by flooding at 1 m and 10 m inundation levels. The most severely affected sectors are expected to be the residential and recreational areas, agricultural land, and the natural ecosystem. As this coast is planned for future coastal developmental activities, measures such as building regulation, urban growth planning, development of an integrated coastal zone management, strict enforcement of the Coastal Regulation Zone (CRZ) Act 1991, monitoring of impacts and further research in this regard are recommended for the study area.  相似文献   

2.
布容法则及其在中国海岸上的应用   总被引:12,自引:1,他引:11  
布容(Bruun)法则是预测海平面上升引起海岸侵蚀最早的方法也是最简单的方法。根据中国砂质和淤泥质海岸的情况,布容法则可定性地解释海平面上升与海岸侵蚀的关系,在满足它要求条件的海岸地段和发育时期,用它预测海岸侵蚀或许是可能的。但是,若不严格审查海岸环境和条件,把它作为海平面上升情况预测海岸侵蚀的普遍模式,有待更多的研究加以证明。  相似文献   

3.
The identification of potential coastal inundation caused by future sea level rise requires not only time series records from tide gauges, but also high-quality digital elevation models (DEMs). This study assesses the importance of DEM vertical accuracy in predicting inundation by sea level rise along the Valdelagrana beach and marshes of the Bay of Cádiz (SW Spain). A present-day (2000) and a projected (2100) high tide have been spatialized over a traditional (aerial photogrammetry) regional DEM of Andalusia with a horizontal spatial resolution of 10 m and a vertical accuracy of 0.68 m RMSE (root mean square error), and a LIDAR-derived DEM of the Valdelagrana study site with the same spatial resolution but a vertical accuracy of 0.205 m RMSE. The simulations are based on a bathtub model, which accounts for the effect of vertical barriers. The results reveal that the presence of infrastructures such as roads and salterns is the key to delimit the extent of water penetration during high tides in an otherwise homogeneously flat area comprising the beach and marshes of Valdelagrana. Moreover, in comparison with the highly accurate LIDAR DEM, the inundation areas derived from the lower-resolution DEM are overestimated by 72 % and 26 % for the present-day and future scenarios respectively. These findings demonstrate that DEM vertical accuracy is a critical variable in meaningfully gauging the impacts of sea level rise.  相似文献   

4.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

5.
The UNEP in its regional seas program in 1989 has included Pakistan in a group of countries which are vulnerable to the impact of rising sea level. If the present trend of sea level rise (SLR) at Karachi continues, in the next 50 years the sea level rise along the Pakistan Coast will be 50 mm (5 cm). Since the rising rates of sea level at Karachi are within the global range of 1-2 mm/year, the trends may be treated as eustatic SLR. Historical air temperature and sea surface temperature (SST) data of Karachi also show an increasing pattern and an increasing trend of about 0.67°C has been registered in the air temperature over the last 35 years, whereas the mean SST in the coastal waters of Karachi has also registered an increasing trend of about 0.3°C in a decade. Sindh coastal zone is more vulnerable to sea level rise than Baluchistan coast, as uplifting of the coast by about 1-2 mm/year due to subduction of Indian Ocean plate is a characteristic of Baluchistan coast. Within the Indus deltaic creek system, the area nearby Karachi is more vulnerable to coastal erosion and accretion than the other deltaic region, mainly due to human activities together with natural phenomena such as wave action, strong tidal currents, and rise in sea level. Therefore, The present article deals mainly with the study of dynamical processes such as erosion and accretion associated with sea level variations along the Karachi coast and surrounding Indus deltaic coastline. The probable beach erosion in a decade along the sandy beaches of Karachi has been estimated. The estimates show that 1.1 mm/year rise in sea level causes a horizontal beach loss of 110 mm per year. Therefore, coast eroded with rise in sea level at Karachi and surrounding sandy beaches would be 1.1 m during a period of next 10 years. The northwestern part of Indus delta, especially the Gizri and Phitti creeks and surrounding islands, are most unstable. Historical satellite images are used to analyze the complex pattern of sediment movements, the change in shape of coastline, and associated erosion and accretion patterns in Bundal and Buddo Islands. The significant changes in land erosion and accretion areas at Bundal and Buddo Islands are evident and appear prominently in the images. A very high rate of accretion of sediments in the northwestern part of Buddo Island has been noticed. In the southwest monsoon season the wave breaking direction in both these islands is such that the movement of littoral drift is towards west. Erosion is also taking place in the northeastern and southern part of Bundal Island. The erosion in the south is probably due to strong wave activities and in the northeast is due to strong tidal currents and seawater intrusion. Accretion takes place at the northwest and western parts of Bundal Island. By using the slope of Indus delta, sea encroachment and the land area inundation with rising sea level of 1 m and 2 m have also been estimated.  相似文献   

6.
The disastrous tsunami of December 26, 2004, exposed the urgent need for implementing a tsunami warning system. One of the essential requirements of a tsunami warning system is the set up of tsunami inundation models which can predict inundation and run-up along a coastline for a given set of seismic parameters. The Tsunami Warning Centre and the State/District level Disaster Management Centres should have tsunami inundations maps for different scenarios of tsunami generation. In the event of a tsunamigenic earthquake, appropriate decisions on issue of warnings and/or evacuation of coastal population are made by referring to such maps. The nature of tsunami inundation and run-up along the Kerala coast for the 2004 Sumatra and 1945 Makran, and a hypothetical worst-case scenario are simulated using the TUNAMI N2 model and the results are presented in this paper. Further, scenarios of tsunami inundation arising out of possible rise in sea level as projected by the Intergovernmental Panel on Climate Change (IPCC 2001) are also simulated and analysed in the paper. For the study, three representative sectors of the Kerala coast including the Neendakara-Kayamkulam coast, which was the worst hit by the 2004 tsunami, are chosen. The results show that the southern locations and certain locations of central Kerala coast are more vulnerable for Sumatra when compared to Makran 1945 tsunami. From the results of numerical modelling for future scenarios it can be concluded that sea level rise can definitely make pronounced increase in inundation in some of the stretches where the backshore elevation is comparatively low.  相似文献   

7.
Global climate models have predicted a rise on mean sea level of between 0.18 m and 0.59 m by the end of the 21st Century, with high regional variability. The objectives of this study are to estimate sea level changes in the Bay of Biscay during this century, and to assess the impacts of any change on Basque coastal habitats and infrastructures. Hence, ocean temperature projections for three climate scenarios, provided by several atmosphere–ocean coupled general climate models, have been extracted for the Bay of Biscay; these are used to estimate thermosteric sea level variations. The results show that, from 2001 to 2099, sea level within the Bay of Biscay will increase by between 28.5 and 48.7 cm, as a result of regional thermal expansion and global ice-melting, under scenarios A1B and A2 of the Intergovernmental Panel on Climate Change. A high-resolution digital terrain model, extracted from LiDAR, data was used to evaluate the potential impact of the estimated sea level rise to 9 coastal and estuarine habitats: sandy beaches and muds, vegetated dunes, shingle beaches, sea cliffs and supralittoral rock, wetlands and saltmarshes, terrestrial habitats, artificial land, piers, and water surfaces. The projected sea level rise of 48.7 cm was added to the high tide level of the coast studied, to generate a flood risk map of the coastal and estuarine areas. The results indicate that 110.8 ha of the supralittoral area will be affected by the end of the 21st Century; these are concentrated within the estuaries, with terrestrial and artificial habitats being the most affected. Sandy beaches are expected to undergo mean shoreline retreats of between 25% and 40%, of their width. The risk assessment of the areas and habitats that will be affected, as a consequence of the sea level rise, is potentially useful for local management to adopt adaptation measures to global climate change.  相似文献   

8.
相对海平面上升对中国沿海地区的可能影响   总被引:6,自引:0,他引:6  
刘杜娟 《海洋预报》2004,21(2):21-28
本文论述了相对海平面变化研究的重要性,并在IPCC提供的全球海平面变化背景值之上,给出中国未来几十年相对海平面变化的预测值。中国大河三角洲地区未来几十年相对海平面皆呈上升趋势,但幅度不同。因此,充分认识相对海平面上升将导致的危害就显得极为重要和迫切。相对海平面上升将对中国沿海地区产生以下影响:(1)导致海岸侵蚀,扩大侵蚀范围;(2)风暴潮强度与频率增加:(3)沿海低地与湿地被淹没;(4)海水入侵加剧,范围扩大,水资源和水环境遭到破坏;(5)防汛工程功能降低,洪涝灾害加剧。因此,沿海地区政府决策应考虑未来相对海平面变化的影响。  相似文献   

9.
辽河三角洲地区海平面上升趋势及其影响评估   总被引:11,自引:1,他引:10  
根据潮位资料分析,辽河三角洲平原和辽东湾东岸近四五十年来相对海平面处于上升趋势,从70年代以来平均每年上升量为5mm左右.考虑到辽河三角洲平原地面下沉以及全球性海平面将加速上升,预计下个世纪内,辽河三角洲平原相对海平面上升的速率将达到8-10mm/a,到2050年相对海平面上升量将达到40~55cm.利用遥感和地理信息系统,对不同的海平面上升量将造成的土地淹没损失进行了预测.如不加防护,相对海平面上升0.5m时,将淹没近4000km2,包括整个营口市区和半个盘锦市区;上升1.0m时,将淹没5000km2.对海平面上升将造成海岸侵蚀、风暴潮和洪涝等灾害加剧等影响也进行了分析.  相似文献   

10.
利用中国沿岸验潮站GNSS和邻近地区陆态网络GNSS基准站观测数据,结合卫星高度计和验潮站海平面观测数据分析了中国沿海验潮站及其邻近地区陆地垂直运动特征。中国沿海海平面观测以及验潮站和陆态网GNSS基准站观测结果显示,中国沿海省区市及沿海验潮站陆地垂直运动总体表现为:辽宁至江苏沿海上升、上海至福建泉州沿海沉降、福建厦门至广西沿海升降交替的格局,局部滨海平原地区如华北平原天津南部、河北平原的沧县则表现出显著的沉降特征。验潮站陆地的抬升与沉降是沿海相对海平面变化的重要组成部分,准确掌握验潮站及其邻近区域的陆地垂直运动特征,可为沿海相对海平面变化分析、海平面变化影响评估以及未来海平面上升预测提供依据。  相似文献   

11.
The eastern part of the Mediterranean coast of Morocco is physically and socio-economically vulnerable to accelerated sea-level rise, due to its low topography and its high ecological and touristic value. Assessment of the potential land loss by inundation has been based on empirical approaches using a minimum inundation level of 2 m and a maximum inundation level of 7 m, where scenarios for future sea-level rise range from 200 to 860 mm, with a ‘best estimate’ of 490 mm. The socio-economic impacts have been based on two possible alternative futures: (1) a ‘worst-case’ scenario, obtained by combining the ‘economic development first’ scenario with the maximum inundation level; and (2) a ‘best-case’ scenario, by combining the ‘sustainability first’ scenario with the minimum inundation level. Inundation analysis, based on Geographical Information Systems and a modelling approach to erosion, has identified both locations and the socioeconomic sectors that are most at risk to accelerated sea-level rise.  相似文献   

12.
This study investigates a construction-induced sea level rise and tide characteristics change, using a regression analysis to separate the local construction effect such as sea-dike/seawalls and global warming from total sea level change. The study also makes it clear why and how the extreme high water level has risen just after constructions at Mokpo harbor in Korea. As a result of the regression analysis, it is found that the high water level rise for the period of 1960–2006 is ~60 cm, which is summation of four components: ~23 cm for Youngsan River sea-dike (1981), ~15 cm for Youngam seawall (1991), ~8 cm for Geumho seawall (1994), and ~14 cm for gradual rise (due mainly to global warming). Then, a numerical simulation at Mokpo coastal zone is performed to identify each component, and the results support the premise that the tidal amplification caused by constructions is due mainly to the extinguishment of the tidal choking effect at outer Mokpogu. The tidal flat effect makes the amplification greater at spring tide or extraordinary high tide, which would result in the increase of inundation risk at the Mokpo coastal zone. Frequency distribution of observed high water level data shows increasing trend for both maximum value of astronomical tide component (simulated high water level) and meteorological tide component (surge height) after the coastal constructions. A frequency analysis presents that the high water level for 50 year return period, which is often used for design in practice, is 474 cm before the construction, and while that is 553 cm after the construction. Furthermore, design height might steadily be elevated considering future global sea level rise.  相似文献   

13.
If the rising sea level due to climate change proceeds in the future with the rate observed in the past four decades, it could inundate some coastal lowlands. The aim of this paper is to assess future risk of sea-level rise (SLR) on the Nile delta of Egypt located along the Mediterranean Sea. Digital Elevation Models (DEMs) are verified, against ground control points, and used to identify areas susceptible to inundation due to future SLR. Analysis of DEMs maps and cross-shore profiles has identified locations that are vulnerable to SLR including coastal wetlands, agriculture areas, and urban neighborhoods. The results have revealed that about 7% of the Nile delta area is at risk of inundation due to future SLR. This information could be used by coastal zone managers in planning and protection of coastal areas.  相似文献   

14.
海平面上升对中国沿海地区影响初析   总被引:2,自引:0,他引:2  
近五十年来中国沿岸海平面变化总的呈上升趋势,年变率平均为1.4mm/a,中国沿岸地形复杂,未来海平面上升可能影响的主要脆弱区为黄河、长江和珠江三大三角洲和滨海平原,其可能受害区域估计达35000km^2。影响中国沿岸相对海平面上升的主要因素有:近代地壳垂直运动和地面沉降,台风和风暴潮,海岸侵蚀和海咸水入侵等。  相似文献   

15.
Coastal erosion and flooding are major threats to coastal dwellers, and the situation is predicted to worsen as a result of the impacts of climate change and associated sea level rise. In order to identify the level of vulnerability of various sections of Ghana's coastline for planning and future hazard management, a coastal vulnerability index approach was adopted for the creation of the relative vulnerability map. The coastal vulnerability variables used include geomorphology, coastal elevation, geology, local subsidence, sea level rise, shoreline change rates, mean tidal range, mean wave height and population density of the coastal areas. Risk factors were assigned to the various variables, and all the factors were combined to calculate the coastal vulnerability for the coastal front of each administrative district along the coast. The outcome was used to produce a vulnerability index map of coastal districts in Ghana. The results revealed that parts of the central coast and the eastern coasts of Ghana were the most vulnerable. It was identified that about 50% of the 540km shoreline of Ghana is vulnerable. This assessment will facilitate the long-term adaptation planning and hazard mitigation to inform the management of Ghana's coast.  相似文献   

16.
The temporal variability of estuarine sedimentation has been investigated in the northernmost part of the Wadden Sea (Denmark), using an estuarine sedimentary sequence at Ho Havn. The sedimentary sequence appears to have been deposited within the last ∼ 2000 yr based on detailed luminescence dating of the estuarine mud, whose ages range between 225 ± 40 and 2050 ± 300 yr. The age-depth profile reveals that the sedimentation rate has varied considerably in the past. Estuarine sedimentation was very rapid ∼ 1400 yr ago; the ages over almost 1 m of sediment are indistinguishable. After this accretion rate of ∼ 9 mm a− 1, the rate dropped abruptly to ∼ 0.3 mm a− 1 some time between 1340 and 970 yr ago. This slow rate of accretion continued until ∼ 350 yr ago, when it accelerated to ∼ 1.3 mm a− 1. These abrupt changes in the accretion rate are possibly related to local sea level fluctuations, thus the period with low accretion rate most probably reflects a situation with a stable or decreasing relative sea level. The rapid deposition of ∼ 0.9 m of sediment within about one century some 1400 yr ago shows that large amounts of fine-grained sediment were available for deposition in the region at that time, and an increasing relative sea level was most probably responsible for the creation of the accommodation space for sedimentation. Recent studies on mudflats and salt marshes in the region also tend to show high accretion rates, indicating that the coastal lagoons could be less vulnerable and threatened by a future sea level rise than generally believed.  相似文献   

17.
区域海平面变化是目前气候变化研究的热点问题.海平面变化具有时间和空间的异质性,分析海平面变化,应充分考虑时间和空间的差异.基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)、最小二乘法,利用卫星高度计、验潮站数据,分析了1993—2016年间中国近海及周边海域海...  相似文献   

18.
Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other extreme oceanic conditions. The results of this study will be useful for the design of coastal engineering projects and the establishment of a tsunami warning system for Shandong Province.  相似文献   

19.
I~IOXThe sea level rise threatens China's coastal plains and river deltas and makes them the vulnerable areas due to their loW elevation.Since the 1980s, the Chinese scientists have paid great attention to the problem of the sealevel rise caused by the global warming. They have analyZed and calculated the trend of the relative sea level change along the China's coast in the past 50 a. The result of study shows that therising rate of the sea level along China's coast is (1. 7 i 0. 3) rum/a.…  相似文献   

20.
In this study we investigated the impacts of potential changes of land cover due to sea-level rise (SLR) on storm surge (i.e., the rise of water above normal sea level, namely mean-sea level and the astronomical tide, caused by hurricane winds and pressure) response inside bays on the lower Texas coast. We applied a hydrodynamic and wave model (ADCIRC + SWAN) forced by hurricane wind and pressure fields to quantify the importance of SLR-induced land cover changes, considering its impacts by changing bottom friction and the transfer of wind momentum to the water column, on the peak surge inside coastal bays. The SLR increments considered, 0.5 m to 2.0 m, significantly impacted the surge response inside the bays. The contribution of land cover changes due to SLR to the surge response, on average, ranged from a mean surge increase of 2% (SLR of 0.5 m) to 15% (SLR of 2.0 m), in addition to the SLR increments. The increase in surge response strongly depended on storm condition, with larger increases for more intense storms, and geographical location. Although land cover changes had little impact on the surge increase for SLR increments lower than 1.0 m, intense storms resulted in surge increase of up to 10% even for SLR below 1.0 m, but in most cases, the geometry changes were the major factor impacting the surge response due to SLR. We also found a strong relationship between changes in bottom friction and the surge response intensification; demonstrating the importance of considering land cover changes in coastal regions that are highly susceptible to SLR when planning for climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号