首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pea, lentil and navy bean starches were annealed at 50 °C (70% moisture) for 24 h and heat-moisture treated at 120 °C (30% moisture) for 24 h. These starches were also modified by a combination of annealing (ANN) and heat-moisture treatment (HMT). The impact of single and dual modifications (ANN–HMT and HMT–ANN) on the crystalline structure, thermal properties, and the amounts of rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) were investigated. Birefringence remained unchanged on ANN but decreased on HMT. Granular swelling and amylose leaching decreased on ANN and HMT. Relative crystallinity, gelatinization enthalpy, and short-range order on the granule surface increased on ANN but decreased on HMT. Gelatinization transition temperatures increased on ANN and HMT. Gelatinization temperature range decreased and increased on ANN and HMT, respectively. ANN and HMT increased SDS and decreased RS levels in all starches. However, RDS levels increased on ANN and HMT in pea and lentil starches but decreased in navy bean starch. In gelatinized starches, ANN and HMT decreased RDS level and increased SDS and RS levels. Changes to crystalline structure, thermal properties and amounts of RDS, SDS, and RS were modified further on ANN–HMT and HMT–ANN.  相似文献   

2.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

3.
The effect of heat‐moisture treatment (HMT) on the properties of pinhão starches under different moisture and heat conditions was investigated. The starches were adjusted to 15, 20 and 25% moisture levels and heated to 100, 110 and 120°C for 1 h. The X‐ray diffractograms, swelling power, solubility, gel hardness, pasting properties and thermal properties of the native and HMT pinhão starches were evaluated. Compared to native starch, there was an increase in the X‐ray intensity and gel hardness of HMT starches, with the exception of the 25% moisture‐treated and 120°C heat‐treated starch. HMT reduced the swelling power and solubility of the pinhão starches when compared to native starch. There was an increase in the pasting temperature, final viscosity and setback and a decrease in the peak viscosity and breakdown of HMT pinhão starches compared to native starch. HMT increases the gelatinisation temperature of native pinhão starch and reduces gelatinisation enthalpy.  相似文献   

4.
The objectives of this study were to determine the impact of structural changes within the amorphous and crystalline domains of normal potato (NP) and waxy potato (WP) starches subjected to heat-moisture treatment (HMT) at 80, 100, 120 and 130 °C for 16 h at a moisture content of 27% and to determine the impact of structural changes at each of the above temperatures on the susceptibility on hydrolysis by porcine pancreatic α-amylase (PPA). The results showed that structural changes due to HMT were influenced by differences in starch chain mobility at the different temperatures of HMT. Starch chain mobility in turn was influenced by the interplay between the extent to which B-type crystallites were transformed into A + B-type crystallites, kinetic energy imparted to starch chains and amylose content. The main type of structural changes influencing physicochemical properties at the different temperatures of HMT was starch chain interactions (at 80 and 100 °C), disruption of hydrogen bonds between amylose (AM)–amylopectin (AMP) and AMP–AMP chains (at 120 and 130 °C), disorganization of AMP chains near the vicinity of the hilum (at 100, 120 and 130 °C) and formation of interrupted helices (at 130 °C). The susceptibility of NP and WP starches towards α-amylase decreased at 80 °C, but increased in the range of 100 to 130 °C. This suggested that α-amylase hydrolysis of HMT starches was influenced by the interplay of: 1) amount of A-type crystallites, 2) starch chain interactions and 3) changes to double helical conformation. Differences in granule morphology in PPA hydrolyzed NP and WP starches were largely influenced by the higher granular swelling in the latter. NP and WP starches exhibited heterogeneity in degradation (NP > WP) in both their native and HMT states.  相似文献   

5.
Hydrothermal treatments of Finger millet (Eleusine coracana) starch   总被引:2,自引:1,他引:1  
The effect of hydrothermal treatments on the properties of Finger millet starch was investigated. Finger millet was modified by heat-moisture treatment, HMT at 100 °C, 16 h; 20% moisture level (MHT-20), 25% moisture level (MHT-25) and 30% moisture level (MHT-30) and annealed, ANN at 50 °C for 48 h (MAN). Results of the pasting characteristics shows that MNS and MAN were indicative of type ‘B’ starch which is characteristic of normal cereal starches, while HMT starches were Type ‘C’ which is characteristics of cross-linked or legume starches. MNS belonged to the type ‘A’ pattern of cereal starches. X-ray diffractometry studies (XRD) show that MNS gave strong peaks centered at 23.5, 20.3, 18.2, 17.15, and 15.15 Å, while HMT and ANN starches retained the typical ‘A’ pattern. Scanning electron microscopy (SEM) studies show that the shape and surface characteristics of the starches were irregular, polygonal-shaped granules, with less than 1% cavity or ruptured granules. Modification did not affect the appearance. All the starches swell as the temperature increased in the order MNS>MAN>MHT-20>MHT-25>MHT-30, and solubilized at different rate in the following order: MHT-30>MHT-20>MHT-25>MAN>MNS. The gelation profile of the starches ranged from 4 to 8% (w/v), while its oil and water absorption capacity ranged from 1.90 to 2.50 and 2.75 to 3.25 g/g, respectively.  相似文献   

6.
Rungarun Hormdok 《LWT》2007,40(10):1723-1731
Two types of hydrothermal treated rice starches were prepared by annealing and heat-moisture treatment (HMT). Annealing of starch slurry was conducted at 55 °C for 24 h and HMT was applied in starch with 20 g/100 g moisture at 110 °C for 1.5 h, based on the optimization of the treatment conditions. The apparent changes on gelatinization, swelling, RVA paste viscosities and gel hardness of starch were observed. The study on 50% substitution of rice flour with untreated (UR), annealed (AR) or heat-moisture treated (HR) rice starches proved that the cooking and texture quality of rice noodle was substantially affected by the treatments. The composite noodles of flour and hydrothermal treated rice starches exhibited quality parameters which were closer to those of commercial noodles. The results revealed the possibility of utilizing these starches with low quality rice flour so as to produce noodles of acceptable quality. The study also inferred that characterization of RVA paste viscosities and gel texture of flour could become a practical method for predicting the quality of the derived noodle.  相似文献   

7.
Heat-moisture treatment (HMT) was optimised to increase the formation of slowly digestible starch (SDS) in waxy potato starch, and the structural and physiological properties of this starch were investigated. A maximum SDS content (41.8%) consistent with the expected value (40.1%) was obtained after 5 h 20 min at 120 °C with a 25.7% moisture level. Differential scanning calorimetry of HMT starches showed a broadened gelatinization temperature range and a shift in endothermal transition toward higher temperatures. After HMT, relative crystallinity decreased with increasing moisture level and X-ray diffraction patterns changed from B-type to a combination of B- and A-types. Hollow regions were found in the centres of HMT waxy potato starches. HMT intensity significantly influenced SDS level. This study showed that HMT-induced structural changes in waxy potato starch significantly affected its digestibility and the blood glucose levels of mice who consumed it.  相似文献   

8.
Physicochemical properties of pressure moisture treated (PMT, 550 MPa, 10 min) and heat moisture treated (HMT, 100 °C, 10 h) starches were investigated. Effects of PMT and HMT were different depending on starch type. PMT starches showed dramatic changes in moisture sorption isotherm, pasting properties, thermal characteristics, solubility and swelling power (at 90 °C), and in vitro digestibility. The most dramatic difference between PMT and HMT starches was amylopectin melting transition, i.e., broadening in PMT and shift to high temperature in HMT starches. Moreover, B- and C-type starches revealed the more increase in amylopectin melting enthalpy than A-type starch. Both PMT and HMT did not increase the crystallinity but reorganized the amorphous area to compact, resulting in lower rapidly digestible starch and higher slowly digestible starch than those of native starches. Consequently, PMT changed the digestibility and physicochemical properties of starches with different modes of action compared with HMT.  相似文献   

9.
Cassava, sweet potato and arrowroot starches have been subjected to heat‐moisture treatment (HMT) under different conditions using a response surface design of the variables. A comparative study was performed on the pasting properties, swelling behaviour and the gelatinization properties of the modified starches and also on the rheological and textural properties of their pastes. X‐ray diffraction studies have shown that cassava starch exhibited a slight decrease in crystallinity, whereas sweet potato and arrowroot starches showed an increase in crystallinity after HMT at 120ºC for 14 h with 20% moisture. The swelling volume was reduced and the solubility was enhanced for all three starches after HMT, but both effects were more pronounced in the case of arrowroot starch. The decrease in paste clarity of the starch after HMT was higher in the case of cassava and sweet potato starches. Viscosity studies showed that the peak viscosity of all three starches decreased after HMT, but the paste stability increased as seen from the reduced breakdown ratio and setback viscosity. Studies on rheological properties have shown that storage and loss moduli were higher for the starches heat‐moisture treated at higher moisture and lower temperature levels than the corresponding native starches. Storage of the gel at ‐20ºC resulted in a significant increase in storage modulus for all the three starches. All the textural parameters of the gels were altered after the treatment which depended on the nature of the starch and also the treatment condition.  相似文献   

10.
This study investigated the effects of annealing (ANN) on the properties of rice starches with high, medium and low-amylose contents. The starches were heated with excess water at 45 °C, 50 °C and 55 °C for 16 h. The swelling power, solubility, pasting properties, enzymatic susceptibility, morphology and X-ray crystallinity of the starches were evaluated. Annealing reduced the swelling power and solubility of the starches. ANN at 55 °C increased the pasting temperature and decreased the peak viscosity of the high-amylose rice starch. However, annealing decreased the peak viscosity of the low-amylose starch. The annealed rice starches presented a lower final viscosity and setback than did the native starches, with the exception of the low-amylose starch, which showed an increase in setback. Annealing increased the starches’ susceptibilities to α-amylase and promoted a reduction in their relative crystallinity.  相似文献   

11.
Starches from normal rice (21.72% amylose), waxy rice (1.64% amylose), normal corn (25.19% amylose), waxy corn (2.06% amylose), normal potato (28.97% amylose) and waxy potato (3.92% amylose) were heat-treated at 100 °C for 16 h at a moisture content of 25%. The effect of heat-moisture treatment (HMT) on morphology, structure, and physicochemical properties of those starches was investigated. The HMT did not change the size, shape, and surface characteristics of corn and potato starch granules, while surface change/partial gelatinization was found on the granules of rice starches. The X-ray diffraction pattern of normal and waxy potato starches was shifted from B- to C-type by HMT. The crystallinity of the starch samples, except waxy potato starch decreased on HMT. The viscosity profiles changed significantly with HMT. The treated starches, except the waxy potato starch, had higher pasting temperature and lower viscosity. The differences in viscosity values before and after HMT were more pronounced in normal starches than in waxy starches, whereas changes in the pasting temperature showed the reverse (waxy > normal). Shifts of the gelatinization temperature to higher values and gelatinization enthalpy to lower values as well as biphasic endotherms were found in treated starches. HMT increased enzyme digestibility of treated starches (except waxy corn starch); i.e., rapidly and slowly digestible starches increased, but resistant starch decreased. Although there was no absolute consistency on the data obtained from the three pairs of waxy and normal starches, in most cases the effects of HMT on normal starches were more pronounced than the corresponding waxy starches.  相似文献   

12.
Effect of heat-moisture treatment on rice starch of varying amylose content   总被引:1,自引:0,他引:1  
The effect of heat-moisture treatment (HMT) on the properties of rice starches with high-, medium- and low-amylose content was investigated. The starches were adjusted to 15%, 20% and 25% moisture levels, and heated at 110 °C for 1 h. The swelling power, solubility, pasting properties, morphology, enzymatic susceptibility and X-ray crystallinity of the starches were evaluated. HMT reduced the swelling power and solubility of the starches. The strongest effect of HMT occurred on the high-amylose starch; the pasting temperature was increased and the peak viscosity, breakdown, final viscosity and the setback were reduced. HMT increased the starch’s susceptibility to α-amylase and promoted a reduction in the starch relative crystallinity.  相似文献   

13.
The effects of annealing (ANN) and heat-moisture treatments (HMT) on the physicochemical and functional properties of Sword bean starches were investigated. The pasting properties differ significantly among the starches, with peak viscosity ranging from 399.17 RVU to 438.33 RVU; however, all the starches exhibited ‘Type C’ class with restricted swelling. The HMT starches had the highest gelatinization temperature, while change in enthalpy of gelatinization, ΔHgel of the native starch, was higher (13.82 J/g) than that of the modified starches (1.39–6.74 J/g). The solubility and swelling power of all the starches increased as the temperature increased. The oil and water absorption capacity of the starches ranges between 3.24–3.91 g/g and 2.42–3.35 g/g, respectively. HMT (at 25 and 30% moisture level) changes the X-ray diffraction pattern of the starch from Type ‘B’ to Type ‘C’. The Scanning electron micrograph results revealed the starch granules with smooth ellipsoids and indentation in their centre, hydrothermal modification showed little effect on the morphology and size of the granules. Hydrothermal modification improved the physicochemical and functional properties of the starch without destroying the granule of the starch.  相似文献   

14.
The effects of heat–moisture treatment (HMT; moisture content of 25%, at 100°C for 24 h) on starch chain distribution and unit chain distribution of amylopectin in normal rice, waxy rice, normal corn, waxy corn, normal potato, and waxy potato starches were investigated. After HMT, starch chain distribution (amylose and amylopectin responses) of waxy corn and potato starches were identical to those of untreated starches, whereas the chromatographic response of waxy rice starch showed a slight decrease, but with a slight increase in peak tailing. This result indicated that HMT had no (or very limited) effect on the degradation of amylopectins. Analysis of unit chain distribution of amylopectins revealed that waxy characteristics affected the molecular structure of amylopectin in untreated starches, i.e., the CL of normal‐type starches was greater than that of waxy‐type starches. After HMT, the CL and unit chain distribution of all starches were no different than those of untreated starches. The results implied that changes in the physico‐chemical properties of HMT starches would be due to other phenomena rather than the degradation of amylopectin molecular structure. However, the thermal degradation of amylopectin molecules of waxy starches could occur by HMT at higher treatment temperatures (120 and 140°C).  相似文献   

15.
Pinhão seed is an unconventional source of starch and the pines grow up in native forests of southern Latin America. In this study, pinhão starch was adjusted at 15, 20 and 25% moisture content and heated to 100, 110 and 120 °C for 1 h. A decrease in λ max (starch/iodine complex) was observed as a result of increase in temperature and moisture content of HMT. The ratio of crystalline to amorphous phase in pinhão starch was determined via Fourier transform infra red by taking 1045/1022 band ratio. A decrease in crystallinity occurred as a result of HMT. Polarised light microscopy indicated a loss of birefringence of starch granules under 120 °C at 25% moisture content. Granule size distribution was further confirmed via scanning electron microscopy which showed the HMT effects. These results increased the understanding on molecular and structural properties of HMT pinhão starch and broadened its food and nonfood industrial applications.  相似文献   

16.
The aim of this work was to study the effects of heat‐moisture treatment (27% moisture, 100°C, 16 h) and of enzymatic digestion (alpha‐amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat‐moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X‐ray pattern from B‐ to A‐type. HMT of SP and G starch did not change the X‐ray pattern (A‐type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.  相似文献   

17.
Effects of glycerol on the heat-moisture treatment (HMT) of A-type rice and cassava starches and B-type potato and canna starches were investigated. Starch samples were soaked in water or glycerol solution, adjusted to 25% moisture, and then subjected to HMT at 100 °C for 1, 6, and 16 h. Pasting profiles of all four starches plasticised with water clearly showed the B-type potato and canna starches were more susceptible to HMT than the A-type rice and cassava starches. The effect of HMT on the pasting properties of glycerol-plasticised samples was inconclusive; the B-type canna and A-type cassava starches were altered, but not the B-type potato and A-type rice starches, which remained comparable to the water-plasticised samples. Thus, the type of plasticiser as well as the environment surrounding the crystalline region, which is specific to each starch type, also affect the alteration of starch during HMT.  相似文献   

18.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

19.
Starches were isolated from cassava (Manihot esculenta) and potato (Solanum tuberosum) tubers. They were further modified by acetylation. The physicochemical, functional and thermal properties of native and modified starches, prepared using acetic anhydride at different times (10 and 20 min) were compared. Potato starch (Sipiera/20) showed higher acetyl percentage and degree of substitution values than cassava (2425/20) starch when acetylated for 20 min. Proximate analysis revealed that the acetylated starches retained more moisture than the native ones. Above 75 °C, acetylation improved the water binding capacity of the native cassava starch; the same trend was observed for potato starch from 60 to 90 °C after acetylation. The X-ray powder diffraction patterns derived from acetylated potato starches were similar to its native form, which was expected as B-type pattern; the same trend was observed for modified cassava starch. However the modified starches showed increased crystalline index.  相似文献   

20.
African yam bean (Sphenostylis stenocarpa) starch was subjected to heat moisture treatments at 18% (HMT-18), 21% (HMT-21), 24% (HMT-24), 27% (HMT-27) and excess (Annealing) moisture levels. Proximate chemical composition of the starch samples revealed that the moisture content of the starches ranged between 6.7% and 12.5%. Following modification of the native starch, there was a reduction in the moisture level of the heat moisture treated starches from HMT-18 to HMT-27. However, the annealed starch (HMT-ANN) retained higher moisture content compared to native starch (AYB-Native). The carbohydrate, protein, ash, amylose and fat content reduced with all the forms of heat treatments. At the temperature range studied (60–90 °C), increasing level of heat moisture treatments reduced the solubility and swelling capacity. pH also exert a profound effect both on the solubility and the swelling of the starch. Increasing degree of alkalinity increased both solubility and swelling capacity. In the native and modified starch samples, replacement of the wheat flour by the starch resulted in increased alkaline water retention of the blends. Water absorption capacity of the starch increased with the severity of moisture treatments, while the oil absorption capacity decreased. Apart from HMT-18, there was improved gel forming capacity of all the other heat-modified starches.Pasting temperature increased after hydrothermal modifications, whereas peak viscosity (Pv), Hot Paste Viscosity (Hv), setback and breakdown values all reduced after heat moisture treatments. All the starches were of type-B viscosity.Differential scanning calorimetry studies revealed that heat moisture treatment shifted the onset temperature (To), peak temperature(Tp) and conclusion temperature (Tc) to higher values. The gelatinisation temperature of the annealed starch was comparable to native starch. In addition, gelatinisation band of the native starch increased progressively from HMT-18 to HMT-27. Heat moisture treatment reduced the gelatinsation enthalpy (ΔH), while the enthalpy of retrogradation(ΔHr) increased with the storage time of the gelatinised starch. Retrogradation enthalpy of the heat moisture conditioned starches were lower than the value obtained for the native starch.X-ray diffraction studies of the starch indicated that all the starch samples showed the type-C diffraction pattern. Differences were however observed in their degree of crystallinity. Native starch exhibited the lowest crystallinity (20%) while annealed starch had the highest crystallinity (27%)Microscopy studies revealed surface indentation, formation of groves in the central region, folding of starch granules and formation of doughnut-like appearance in some of the starch samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号