首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 48 毫秒
1.
针对量子进化算法(QEA)求解二进制编码问题比较有效,而求解多进制编码问题则比较困难,提出一种概率进化算法(PEA)。该算法汲取了量子复合位、叠加态等思想,采用由观测概率构成的概率复合位进行编码,观测和更新操作直接针对观测概率进行。PEA保持了QEA的性能,运算速度远优于QEA,并可以采用任意进制编码。函数优化和背包问题实验验证了PEA的有效性。  相似文献   

2.
混合量子进化算法及其应用   总被引:1,自引:0,他引:1  
文章将量子进化算法(QEA)和粒子群算法(PSO)互相结合,提出了两种混合量子进化算法。第一种算法叫做嵌入式粒子群量子进化算法,其主要思想是将简化的PSO进化方程嵌入QEA的进化操作中,简化了QEA算法的结构,增强了QEA跳出局部极值的能力。第二种算法叫做量子二进制粒子群算法,其主要思想是将QEA中的量子染色体的概念引入二进制粒子群算法(BPSO),提高了BPSO算法保持种群多样性的能力和运算速度。通过对0-1背包问题和多用户检测问题的求解表明,新的算法不仅操作更简单,而且全局搜索能力有了显著的提高。  相似文献   

3.
一种新的求解TSP的混合量子进化算法   总被引:1,自引:1,他引:0  
武妍  包建军 《计算机应用》2006,26(10):2433-2436
在分析量子进化基本概念的基础上,提出了一种新的求解TSP的混合量子进化算法(MQEA)。该算法将三段优化局部搜索算法融入量子进化机制,采用一种基于边的编码方法,应用最近邻规则设置初始参数,并设计了排序交叉算子以扩展种群的搜索范围。通过选取国际通用旅行商问题(TSP)实例库(TSPLIB)中的多个实例进行测试,表明新算法具有高的精确度和鲁棒性,即使对于中大规模问题(城市数大于500),也能以很小的种群和微小的相对误差求得满意解。  相似文献   

4.
实数编码量子进化算法   总被引:5,自引:0,他引:5  
为求解复杂函数优化问题,基于量子计算的相关概念和原理,提出一种实数编码量子进化算法.首先构造了由自变量向量的一个分量和量子比特的一对概率幅为等位基因的三倍体染色体,增加了解的多样性;然后利用量子旋转门和依据量子比特概率幅满足归一化条件设计的互补双变异算子进化染色体,实现局部搜索和全局搜索的平衡.标准函数仿真表明,该算法适合求解复杂函数优化问题,具有收敛速度快、全局搜索能力强和稳定性好的优点.  相似文献   

5.
针对具有连续解空间的数值函数优化问题,基于量子算法和实数编码进化算法的思想,提出一种新的相位角编码量子进化算法(PAQEA).算法的概率表达特性使得量子染色体能够以一定概率表达优化问题的所有可行解,结合动态量子旋转门实现染色体的进化,实现了算法局部搜索与全局搜索的平衡.理论分析证明了算法的全局收敛性.仿真结果表明,该算法适用于复杂数值函数优化问题,具有收敛速度快、搜索能力强和稳定性高的特点.  相似文献   

6.
量子进化方法是受量子计算思想的启发而产生的一种新型的高效算法,在计算效率和避免陷入局部极值问题上有着卓越的成效.因此,量子机制与智能优化算法的组合,将进一步扩展智能优化算法的应用领域,提高优化算法解决问题的能力.为此,将量子计算引入到差分进化算法中,提出一种新型的进化算法一量子差分进化算法.该方法将量子比特的概率幅表示应用于染色体的实数编码,用量子变异、量子交叉、量子选择操作实现染色体位置的更新,用量子非门进行量子位两个概率幅互换,能在防止算法早熟的同时使算法更快收敛.并分别以函数极值和TSP问题为例进行了仿真,验证了算法的有效性.  相似文献   

7.
一种新型的多目标优化混合量子进化算法   总被引:1,自引:0,他引:1  
申晓宁 《计算机应用研究》2012,29(12):4441-4444
针对复杂多目标优化问题,提出一种混合量子进化算法,并利用它求解多目标函数优化问题。该算法根据多目标优化的特点,创建外部集合保存历代搜索到的非支配解,利用其中的精英个体设计了一种旋转角自适应调整的量子门更新策略,并对量子比特表示的概率幅设置最大和最小阈值,以防止量子群体早熟收敛。借鉴量子门引入了专门针对量子个体的旋转交叉算子,同时小概率地对量子比特进行取反变异操作。对所提算法的计算复杂度进行了理论分析。与另一种已有的多目标量子进化算法的比较结果表明,所提算法具有更好的收敛性能、分布特性及求解效率。  相似文献   

8.
针对量子进化计算中反馈信息利用不充分并容易早熟的不足,将量子进化计算与及蚂蚁寻优策略融合,提出了一种新的优化方法—混合量子进化算法(HQEA).以量子染色体表示智能蚂蚁所有可能的搜索路径,初始阶段采用量子进化学习,设计了智能蚂蚁网络及衔接算子,进化学习所得结果表示智能蚂蚁路径选择的概率,并利用蚁群寻优策略继续搜索求精确解.理论证明该算法具有全局收敛性.最后以背包问题对算法进行了测试.  相似文献   

9.
聚类分析是模式识别中的一个重要问题,是非监督学习的重要方法。K -means 算法是其中最经典的聚类算法之一。但是这种方法面对大规模数据的时候工作量非常巨大,并且保证不了聚类结果的最优性。提出了一种基于量子进化算法的改进的 K -means 聚类算法。该方法结合了两个方法的优点,用量子进化算法进行优化,并且改进了量子进化算法中的交叉算子和更新算子,提高了基于量子进化算法的 K -means 算法局部搜索能力。实验结果表明,改进算法取得了较好的效果。  相似文献   

10.
混合量子差分进化算法及应用   总被引:2,自引:0,他引:2       下载免费PDF全文
任子武  熊蓉  褚健 《控制理论与应用》2011,28(10):1349-1355
量子进化算法基于量子旋转门更新量子比特状态影响了算法搜索性能.提出一种差分进化(DE)与和声搜索(Hs)相结合更新量子比特状态的混合量子差分进化算法(HQDE).该方法采用实数量子角形式编码染色体,设计一种由差分进化计算更新量子位状态的量子差分进化算法(QDE)和一种由和声搜索更新量子位状态的量子和声搜索(QHS),并相互机制融合,采用两种不同进化策略共同作用产生种群新量子个体以克服常规算法中早熟及收敛速度慢等缺陷;在此基础上,算法还引入量子非门算子对当前最劣个体以一定概率选中的量子比特位进行变异操作增强算法跳出局部最优解能力.理论分析证明该算法收敛于全局最优解.0/1背包问题及旅行商问题实例测试结果验证了该方法有效性.  相似文献   

11.
张新明  涂强  康强  程金凤 《计算机科学》2017,44(9):93-98, 124
灰狼优化(Grey Wolf Optimization,GWO)算法是近年被提出的一种新型智能优化算法,具有收敛速度快和优化精度高的特点,但对于一些复杂优化问题易陷入局部最优。差分进化(Differential Evolution,DE)算法的全局搜索能力强,但其性能对参数敏感,且局部搜索能力不足。为了发挥二者各自的优点并弥补存在的缺陷,提出了一种灰狼优化与差分进化的混合优化算法。首先使用嵌入趋优算子的GWO算法搜索,以便在更短的过程中获得更高的优化精度和更快的收敛速度;然后采用自适应调节参数的差分进化策略来进一步提高算法对复杂优化函数的寻优性能,从而获得一种高性能的混合优化算法,以便能更高效地解决各种函数优化问题。对12个高维函数的优化结果表明,与标准GWO,ACS,DMPSO及SinDE相比,新的混合优化算法不仅具有更好的收敛速度和优化性能,而且具有更好的普适性,更适用于解决各种函数优化问题。  相似文献   

12.
1.引言遗传算法的基本思想来源于达尔文(Dorwin)的进化论和门德尔(Mendel)的遗传学说。达尔文的进化论认为:每一物种在不断的发展过程中越来越适应环境,在个体的生存与发展中那些适应环境的个体则被保留下来,体现了“适者生存”的原理。与此相应,门德尔的遗传学说则认为:遗传是作为一种指令码封装在每个细胞中,并以基因的形式包含在染色体中。通过基因杂交和基因突变可产生对环境适应强的后代,并通过优胜劣汰的自然选择,适应值高的基因则被保留下来。霍兰德(Holland)等人正是综合了上述两种学说的基本  相似文献   

13.
针对标准差分进化算法在求解复杂优化问题时易陷入局部最优的问题,提出了一种基于极值动力学机制的混合差分进化算法。该算法的核心在于,当种群聚集度较高时, 利用极值优化算法强大的波动性,通过引入基于种群的极值优化算法来提高种群多样性,从而协助差分进化算法跳出局部最优。仿真实验表明,该混合算法具有较好的全局收敛性,能有效避免早熟收敛。  相似文献   

14.
量子衍生坍缩形态学滤波   总被引:5,自引:1,他引:4  
为了更有效地滤除数字图像中的噪声,受量子信息处理理论启发,将传统的形态学运算结构元素扩展到叠加态结构元素以更有利于图像的去噪。由于叠加态结构元素只有尺度范围,没有固定的大小和形状,因此可表示为该尺度范围内的各种不同大小和形状的传统结构元素的线性叠加,并在受到测量时可坍缩到其中的某一传统结构元素。该文首先定义了一个基于叠加态结构元素的坍缩形态学算子,然后在此基础上构建了一种基于均方差的自适应形态滤波方法。计算机仿真实验表明,该滤波方法与中值滤波和传统的形态滤波方法相比较,有更强的噪声滤除能力,并且对噪声的强度不敏感。  相似文献   

15.
本文首先介绍大数质因子分解的Shor量子算法的原理、实现步骤和实现方法,然后用现存的模拟器在常规计算机上加以模拟。最后讨论了Shor算法模拟的意义,并对量子计算提出了看法。  相似文献   

16.
量子遗传算法研究现状   总被引:22,自引:1,他引:22  
Quantum Genetic Algorithm (QGA)is the combination of quantum computation and genetic algorithm. In this paper, actuality of research on QGA is summarized. QGA and Multi-universe Parallel Quantum Genetic Algorithm (MPQGA)are discussed in detail. Application progenies in respective regions are introduced. The subsequent research on QGA is also prospected.  相似文献   

17.
混合量子算法及其在flow shop问题中的应用   总被引:2,自引:0,他引:2  
量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微粒群算法(PSO)及进化计算思想融入QEA中,构成了混合量子算法(HQA)。采用flow shop经典问题对算法进行了测试,结果证明混合算法克服了QEA的缺陷,对于求解排序问题具有一定的普适性。  相似文献   

18.
量子进化算法原理及改进策略研究   总被引:1,自引:0,他引:1  
魏娜  黄学宇  刘守东 《计算机工程》2011,37(20):223-226
针对传统进化算法存在收敛速度慢和未成熟收敛的问题,将进化算法与量子理论相结合,提出一种量子进化算法。使用量子比特编码染色体,构造一种新的用于普通染色体的全干扰交叉操作。实验证明,该算法能带来丰富的种群,使其以大概率向优良模式进化,从而加快算法的收敛速度,同时还能避免种群陷于一个局部最优,有效防止早熟。  相似文献   

19.
一种改进的量子遗传算法及其应用   总被引:2,自引:0,他引:2  
针对基于Bloch球面坐标编码的量子遗传算法应用中的优化效率低和局部寻优较差能力问题,提出2点改进措施:在比较种群的基础上将局部搜索与全局搜索相结合;依据三链特性将搜索空间扩展为3Bloch球面空间。将改进算法应用于多变量函数极值优化问题,仿真结果表明,该改进算法寻优代数小、收敛速度快、效率高,并且具有较好的种群多样性,验证了改进措施的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号

京公网安备 11010802026262号