首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3‐hexylthiophene) with the two polyfluorene copolymers poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthien‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2′′‐diyl) (F8TBT) and poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100 °C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140 °C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing‐incidence small‐angle X‐ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140 °C‐annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as‐spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200 °C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize.  相似文献   

2.
Herein, we address the reduction in the external quantum efficiency (EQE) of solution‐processed organic photodetectors caused by the room temperature phase demixing of components in the composite material of the photoactive layer. The reduction takes place under ambient conditions and after the completion of device fabrication. As a model system, we study photoactive blend films that consist of the electron acceptor N,N’‐bis(alkyl)‐3,4,9,10‐perylene tetracarboxylic diimide) (PDI) and the electron donor polymer poly(9,9’‐dioctylfluorene‐co‐benzothiadiazole) (F8BT). The ambient ageing of these photo­active layers is a consequence of the PDI component segregation; however, the final PDI domain size remains smaller than the resolution limit of optical microscopy. We find that the photophysical properties of the aged F8BT:PDI layer and the EQE of the aged device are significantly altered. The fabrication of F8BT:PDI layers from solvents of increasing boiling point allows for the spectroscopic monitoring of the ageing‐induced phase segregation (a‐PSG) process. For each solvent used, the extent of a‐PSG is correlated with the PDI dispersion in the F8BT matrix as received immediately after layer deposition. The tendency for room temperature phase demixing becomes stronger as PDI is more finely dispersed in the freshly spun F8BT:PDI layer. The evolution of the room temperature phase segregation of PDI has a negative impact on the photophysical processes that are essential for charge photogeneration in the F8BT:PDI photoactive layer.  相似文献   

3.
In the present work, we correlate the photophysical and photovoltaic properties with the respective film morphologies of three different blends made of the fluorene copolymers poly(9,9′‐dioctylfluorene‐co‐benzothiadiazole) (F8BT), poly[9,9′‐dioctylfluorene‐coN‐(4‐butylphenyl)diphenylamine] (TFB), and poly[9,9′‐dioctyfluorene‐co‐bis‐N,N′‐(4‐butylphenyl)‐bis‐N,N‐phenyl‐1,4‐phenylenediamine] (PFB) when blended with a perylene tetracarboxylic diimide (PDI) derivative. Additional photophysical studies in reference PDI blends of the electronically inert poly(styrene) matrix address the enhanced PDI intermolecular solid‐state interactions. We resolve the process of resonance energy transfer from excited polymer hosts to PDI and the process of photoinduced hole transfer from PDI to the polymer hosts. We deduce the efficiency of charge‐transfer PDI photoluminescence (PL) quenching and we discuss the power‐law PL kinetics seen in the as‐spun systems. Next we determine the dependence of the device external quantum efficiency (EQE) of these blends, in a range of annealing temperatures and PDI loadings. Differential scanning calorimetry enables precise selection of annealing temperatures. Optical microscopy shows that annealing enhances the order characteristics in the PDI aggregates in the F8BT:PDI system. In the case of the TFB:PDI and PFB:PDI blends, AFM studies suggest the formation of PDI‐rich domains on the film/air interface. The degree of order in the ππ stacking of the PDI monomers is inferred by the UV–Vis and PL spectra of the blends. The extent of order characteristics in PDI aggregates is correlated with the thermal properties of the hosts that control PDI molecular mobility upon annealing. The efficient dispersion of disrupted PDI crystallites is proposed to form appropriate percolation networks that favor balanced extraction of photogenerated carriers.  相似文献   

4.
The performance of polymer:polymer solar cells that are made using blend films of poly(3‐hexylthiophene) (P3HT) and poly(9,9‐dioctylfluorene‐co‐ benzothiadiazole (F8BT) is improved by doping the F8BT polymer with an organosulfonic acid [4‐ethylbezenesulfonic acid (EBSA)]. The EBSA doping of F8BT, to form F8BT‐EBSA, is performed by means of a two‐stage reaction at room temperature and 60°C with various EBSA weight ratios. The X‐ray photoelectron spectroscopy measurement reveals that both sulfur and nitrogen atoms in the F8BT polymer are affected by the EBSA doping. The F8BT‐EBSA films exhibit huge photoluminescence quenching, ionization potential shift toward lower energy, and greatly enhanced electron mobility. The short‐circuit current density of solar cells is improved by ca. twofold (10 wt.% EBSA doping), while the open‐circuit voltage increases by ca. 0.4 V. Consequently, the power conversion efficiency was improved by ca. threefold, even though the optical density of the P3HT:F8BT‐EBSA blend film is reduced by 10 wt.% EBSA doping due to the nanostructure and surface morphology change.  相似文献   

5.
In this paper scanning near‐field microscopy is used to characterize polymer blends for photovoltaic applications, and fluorescence imaging and photoconductivity are combined to elucidate the spatial distribution and relative efficiency of current generation and photoluminescence in different domains of compositionally heterogeneous films. Focus is placed on a binary system consisting of poly[(9,9‐dioctylfluorene)‐alt‐benzothiadiazole] (F8BT) and poly[(9,9‐dioctylfluorene)‐alt‐(bis(N,N′‐(4‐butylphenyl))‐bis(N,N′‐phenyl‐1,4‐phenylenediamine))] (PFB), spun from xylene solutions, so as to obtain phase separation on micrometer and nanometer length scales. Protruding regions with diameters of about 5 μm in the topography image coincide with regions of high photocurrent (PC) and luminescence; these regions are identified as being F8BT‐rich. A general method to estimate the photoluminescence efficiency in the different domains of phase‐separated blends is proposed. As expected, lack of enhancement of the PC signal at the boundaries between protruding and lower‐lying phases indicate that these microscale boundaries play a small role in the charge generation by exciton splitting. This is consistent with the domains compositional inhomogeneity, and thus with finer phase separation within the domains. We also provide an analysis of the extent to which the metallized probe perturbs the near‐field photocurrent signal by integrating Poisson's equation. Finally, by using a Bethe–Bouwkamp model, the energy absorbed by the polymer film in the different regions is estimated.  相似文献   

6.
The spectral characteristics of polyfluorene (PF)‐based light‐emitting diodes (LEDs) containing a defined low concentration of either keto‐defects or of the polymer poly(9,9‐octylfluorene‐co‐benzothiadiazole) (F8BT) are presented. Both types of blend layers were tested in different device configurations with respect to the relative and absolute intensities of green and blue emission components. It is shown that blending hole‐transporting molecules into the emission layer at low concentration or incorporation of a suitable hole‐transporting layer reduces the green emission contribution in the electroluminescence (EL) spectrum of the PF:F8BT blend, which is similar to what is observed for the keto‐containing PF layer. We conclude that the keto‐defects in PF homopolymer layers mainly constitute weakly emissive electron traps, in agreement with the results of quantum‐mechanical calculations.  相似文献   

7.
The ability to control organic‐organic interfaces in conjugated polymer blends is critical for further device improvement. Here, we control the phase separation in blends of poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (F8BT) and poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene) (TFB) via chemical modification of the substrate by microcontact printing of octenyltrichlorosilane molecules. The lateral phase‐separated structures in the blend film closely replicate the underlying micrometer‐scale chemical pattern. We found nanometer‐scale vertical segregation of the polymers within both lateral domains, with regions closer to the substrate being substantially pure phases of either polymer. Such phase separation has important implications for the performance of light‐emitting diodes fabricated using these patterned blend films. In the absence of a continuous TFB wetting layer at the substrate interface, as typically formed in spin‐coated blend films, charge carrier injection is confined in the well‐defined TFB‐rich domains. This confinement leads to high electroluminescence efficiency, whereas the overall reduction in the roughness of the patterned blend film results in slower decay of device efficiency at high voltages. In addition, the amount of surface out‐coupling of light in the forward direction observed in these blend devices is found to be strongly correlated to the distribution of periodicity of the phase‐separated structures in the active layer.  相似文献   

8.
《Organic Electronics》2014,15(7):1347-1361
A model bulk-heterojunction of a perylene diimide (PDI) monomeric derivative is studied for interrogating the role of PDI aggregates in the photocurrent generation efficiency (ηPC) of PDI-based organic photovoltaic (OPV) devices. Blend films of the PDI derivative and the poly(indenofluorene) (PIF) polymer annealed between room temperature and 220 °C, are used as the photoactive layers for the fabrication of OPVs. The positive effect of thermal annealing is assigned to the evolution of PDI aggregates in the amorphous PIF matrix. Annealing increases the electron mobility by three orders of magnitude. In contrast, owned to the thermally inert PIF matrix used, hole mobility increases only by a factor of six. High resolution cross-sectional scanning electron microscopy suggests that ηPC in PDI-based OPVs is not limited by the PDI aggregates but by their improper alignment. In situ Raman spectra and density functional theory calculations identify a marker for monitoring the strength of π–π stacking interactions between PDI monomers. It s further demonstrated that the electron-collecting electrode of the PIF:PDI devices dictates their performance. The use of Al is found to impede charge extraction and this is attributed to an unidentified product of the reaction between PDI and Al that leads to the formation of an electron-blocking layer. Device performance rectifies when a Ca/Al electrode is used and the power conversion efficiency is increased by a factor of four.  相似文献   

9.
Evidence is presented for the formation of a weak ground‐state charge‐transfer complex in the blend films of poly[9,9‐dioctylfluorene‐coN‐(4‐methoxyphenyl)diphenylamine] polymer (TFMO) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM), using photothermal deflection spectroscopy (PDS) and photoluminescence (PL) spectroscopy. Comparison of this polymer blend with other polyfluorene polymer/PCBM blends shows that the appearance of this ground‐state charge‐transfer complex is correlated to the ionization potential of the polymer, but not to the optical gap of the polymer or the surface morphology of the blend film. Moreover, the polymer/PCBM blend films in which this charge‐transfer complex is observed also exhibit efficient photocurrent generation in photovoltaic devices, suggesting that the charge‐transfer complex may be involved in charge separation. Possible mechanisms for this charge‐transfer state formation are discussed as well as the significance of this finding to the understanding and optimization of polymer blend solar cells.  相似文献   

10.
Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9‐dioctylfluorene‐co‐bis(N,N′‐(4,butylphenyl))bis(N,N′‐phenyl‐1,4‐phenylene)diamine) (PFB) and poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron–hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X‐ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 °C for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three‐fold increase in the number of excitons dissociated. Under short‐circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current‐voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices.  相似文献   

11.
This paper reports state‐of‐the‐art fluorene‐based yellow‐green conjugated polymer blend gain media using Förster resonant‐energy‐transfer from novel blue‐emitting hosts to yield low threshold (≤7 kW cm?2) lasers operating between 540 and 590 nm. For poly(9,9‐dioctylfluorene‐co‐benzothiadiazole) (F8BT) (15 wt%) blended with the newly synthesized 3,6‐bis(2,7‐di([1,1′‐biphenyl]‐4‐yl)‐9‐phenyl‐9H‐fluoren‐9‐yl)‐9‐octyl‐9H–carbazole (DBPhFCz) a highly desirable more than four times increase (relative to F8BT) in net optical gain to 90 cm?1 and 34 times reduction in amplified spontaneous emission threshold to 3 µJ cm?2 is achieved. Detailed transient absorption studies confirm effective exciton confinement with consequent diffusion‐limited polaron‐pair generation for DBPhFCz. This delays formation of host photoinduced absorption long enough to enable build‐up of the spectrally overlapped, guest optical gain, and resolves a longstanding issue for conjugated polymer photonics. The comprehensive study further establishes that limiting host conjugation length is a key factor therein, with 9,9‐dialkylfluorene trimers also suitable hosts for F8BT but not pentamers, heptamers, or polymers. It is additionally demonstrated that the host highest occupied and lowest unoccupied molecular orbitals can be tuned independently from the guest gain properties. This provides the tantalizing prospect of enhanced electron and hole injection and transport without endangering efficient optical gain; a scenario of great interest for electrically pumped amplifiers and lasers.  相似文献   

12.
Organic photodiodes are presented that utilize solution‐processed perylene diimide bulk heterojunctions as the device photoactive layer. The polymer (9,9′‐dioctylfluorene‐co‐benzothiadiazole; F8BT) is used as the electron donor and the N,N′‐bis(1‐ethylpropyl)‐3,4,9,10‐perylene tetracarboxylic diimide (PDI) derivative is used as the electron acceptor. The thickness‐dependent study of the main device parameters, namely of the external quantum efficiency (EQE), the short‐circuit current (ISC), the open‐circuit voltage (VOC), the fill factor (FF), and the dark current (ID) is presented. In as‐spun F8BT:PDI devices the short‐circuit EQE reaches the maximum of 17% and the VOC value is as high as 0.8 V. Device ID is in the nA mm?2 regime and it correlates with the topography of the F8BT:PDI layer. For a range of annealing temperatures ID is monitored as the morphology of the photoactive layer changes. The changes in the morphology of the photoactive layer are monitored via atomic force microscopy. The thermally induced coalescence of the PDI domains assists the dark conductivity of the device. ID values as low as 80 pA mm?2 are achieved with a corresponding EQE of 9%, when an electron‐blocking layer (EB) is used in bilayer EB/F8BT:PDI devices. Electron injection from the hole‐collecting electrode to the F8BT:PDI medium is hindered by the use of the EB layer. The temperature dependence of the ID value of the as‐spun F8BT:PDI device is studied in the range of 296–216 K. In combination with the thickness and the composition dependence of ID, the determined activation energy Ea suggests a two‐step mechanism of ID generation; a temperature‐independent step of electric‐field‐assisted carrier injection from the device contacts to the active‐layer medium and a thermally activated step of carrier transport across the device electrodes, via the PDI domains of the photoactive layer. Moreover, device ID is found to be sensitive to environmental factors.  相似文献   

13.
Here the influence of annealing on the operational efficiency of all‐polymer solar cells based on blends of the polymers poly(3‐hexylthiophene) (P3HT) and poly((9,9‐dioctylfluorene)‐2,7‐diyl‐alt‐[4,7‐bis(3‐hexylthiophen‐5‐yl)‐2,1,3‐benzothiadiazole]‐2′,2″‐diyl) (F8TBT) is investigated. Annealing of completed devices is found to result in an increase in power conversion efficiency from 0.14 to 1.20%, while annealing of films prior to top electrode deposition increases device efficiency to only 0.19% due to a lowering of the open‐circuit voltage and short‐circuit current. By studying the dependence of photocurrent on intensity and effective applied bias, annealing is found to increase charge generation efficiency through an increase in the efficiency of the separation of bound electron‐hole pairs following charge transfer. However, unlike many other all‐polymer blends, this increase in charge separation efficiency is not only due to an increase in the degree of phase separation that assists in the spatial separation of electron‐hole pairs, but also due to an order of magnitude increase in the hole mobility of the P3HT phase. The increase in hole mobility with annealing is attributed to the ordering of P3HT chains evidenced by the red‐shifting of P3HT optical absorption in the blend. We also use X‐ray photoelectron spectroscopy (XPS) to study the influence of annealing protocol on film interface composition. Surprisingly both top and bottom electrode/blend interfaces are enriched with P3HT, with the blend/top electrode interface consisting of more than 95% P3HT for as‐spun films and films annealed without a top electrode. Films annealed following top electrode deposition, however, show an increase in F8TBT composition to ~15%. The implications of interfacial composition and the origin of open‐circuit voltage in these devices are also discussed.  相似文献   

14.
We have studied the thin film morphology of a semiconducting polymer photovoltaic blend comprising an electron acceptor poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) and the donor poly(9,9′-dioctylfluorene-co-bis-N,N′-(4-butylphenyl)-bis-N,N′-phenyl-1,4 phenylenediamine) (PFB). The molecular weight and blend weight ratio of the constituent polymers were used to modify the morphology. The average chemical composition of the bulk of F8BT:PFB blend in thin films was mapped using Raman microscopy at different depths from the air-film interface through controlled successive etching from the upper surface layer using an oxygen plasma. Correlating the lateral to the vertical Raman analysis of the phase separation of the film (blend weight ratio of 50:50) reveals that the μm scale de-mixed lateral phase structure seen on the free surface is present throughout most of the film thickness, though there is also some F8BT content within the PFB-rich wetting layer on the glass substrate, which we consider is due to the F8BT-rich interface at the surface to the substrate. The dependence of photovoltaic performance on morphology is discussed.  相似文献   

15.
We utilize scanning transmission X‐ray microscopy (STXM) to study the domain structure of polycrystalline films of the semiconducting polymer poly(9,9’‐dioctylfluorene‐co‐benzothiadiazole) (F8BT). By taking several images at different orientations of the film with respect to the polarization of the X‐ray beam, we are able to compute quantitative maps of molecular alignment/order and molecular orientation, including both the backbone direction and phenyl ring plane orientation, as well as the in‐plane and out‐of‐plane components. We show that polycrystalline F8BT films consist of well‐ordered micron‐sized domains with the transition from one domain orientation to another characterized either by a smooth transition of orientation or by ~ 200 nm wide disordered domain boundaries. The morphology of the disordered domain boundaries resemble the electroluminescence patterns observed previously in F8BT light‐emitting field‐effect transistors suggesting that charge trapping at these disordered domain boundaries facilitates charge recombination in ambipolar operation. A relatively narrow distribution of local average tilt angles is observed that correlates with film structure, with the ordered domains in general showing a higher tilt angle than the disordered domain boundaries. We also use secondary electron detection to image the surface domain structure of polycrystalline F8BT films and demonstrate that the polycrystalline structure extends to the film/air interface. Finally, we calculate ideal NEXAFS spectra corresponding to a perfect F8BT crystal oriented with the 1s – π* transition dipole moment parallel and perpendicular to the electric field vector of a perfectly linearly polarized X‐ray beam.  相似文献   

16.
Here, it is demonstrated that energy transfer in a blend of semiconducting polymers can be strongly reduced by non‐covalent encapsulation of one constituent, ensured by threading of the conjugated strands into functionalized cyclodextrins. Such macrocycles control the minimum intermolecular distance of chromophores with similar alignment, at the nanoscale, and therefore the relevant energy transfer rates, thus enabling fabrication of white‐light‐emitting diodes (CIE coordinates: x = 0.282, y = 0.336). In particular, white electroluminescence in a binary blend of a blue‐emitting, organic‐soluble rotaxane based on a polyfluorene derivative and the green‐emitting poly(9,9‐dioctylfluorene‐alt‐benzothiadiazole ( F8BT ) is achieved. Morphological and structural analyses by atomic force microscopy, fluorescence mapping, µ‐Raman, and fluorescence lifetime microscopy are used to complement optical and electroluminescence characterization, and to enable a deeper insight into the properties of the novel blend.  相似文献   

17.
18.
A biodegradable, immiscible poly(butylenes adipate‐co‐butylenes terephthalate) [P(BA‐co‐BT)]/poly(ethylene oxide) (PEO) polymer blend film with compositional gradient in the film‐thickness direction has been successfully prepared in the presence of a low‐molecular‐weight compound 4,4′‐thiodiphenal (TDP), which is used as a miscibility‐enhancing agent. The miscibilities of the P(BA‐co‐BT)/PEO/TDP ternary blend films and the P(BA‐co‐BT)/PEO/TDP gradient film were investigated by differential scanning calorimetry (DSC). The compositional gradient structure of the P(BA‐co‐BT)/PEO/TDP (46/46/8 w/w/w) film has been confirmed by microscopic mapping measurement of Fourier‐transform infrared spectra and dynamic mechanical thermal analysis. We have developed a new strategy for generating gradient‐phase structures in immiscible polymer‐blend systems by homogenization, i.e., adding a third agent that can enhance the miscibility of the two immiscible polymers through simultaneous formation of hydrogen bonds with two component polymers.  相似文献   

19.
The influence of the solvent on the morphology and performance of polymer solar cells is investigated in devices based on blends of the polyfluorene copolymer, poly(2,7‐(9,9‐dioctyl‐fluorene)‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)), and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The blends are spin‐coated from chloroform or from chloroform mixed with small amounts of xylene, toluene, or chlorobenzene. The devices are characterized under monochromatic light and solar illumination AM1.5 (AM: air mass). An enhancement of the photocurrent density is observed in diodes made from chloroform mixed with chlorobenzene, and reduced photocurrent density is observed in diodes made from chloroform mixed with xylene or toluene, compared to diodes made from neat chloroform. The open‐circuit voltages are almost the same in all diodes. The surfaces of the active layers are imaged using atomic force microscopy. Height images indicate that a finer and more uniform distribution of domains corresponds to the diodes with enhanced photocurrent that are made from chloroform mixed with chlorobenzene, while a structure with larger domains is associated with the lower photocurrents in the diodes made from chloroform mixed with xylene or toluene. The influence of the morphology on the excited‐state dynamics and charge generation is investigated using time‐resolved spectroscopy. Fast formation of bound charge pairs followed by their conversion into free charge carriers is resolved, and excitation‐intensity‐dependent non‐geminate recombination of free charges is observed. A significant enhancement in free‐charge‐carrier generation is observed on introducing chlorobenzene into chloroform. Imaging photocurrent generation from the solar cells with a light‐pulse technique shows an inhomogeneous photocurrent distribution, which is related to the undulations in the thickness of the active layer. Thicker parts of the diodes yield higher photocurrent values.  相似文献   

20.
The fabrication of functional multilayered conjugated‐polymer structures with well‐defined organic‐organic interfaces for optoelectronic‐device applications is constrained by the common solubility of many polymers in most organic solvents. Here, we report a simple, low‐cost, large‐area transfer‐printing technique for the deposition and patterning of conjugated‐polymer thin films. This method utilises a planar poly(dimethylsiloxane) (PDMS) stamp, along with a water‐soluble sacrificial layer, to pick up an organic thin film (~20 nm to 1 µm) from a substrate and subsequently deliver this film to a target substrate. We demonstrate the versatility of this transfer‐printing technique and its applicability to optoelectronic devices by fabricating bilayer structures of poly(9,9‐di‐n‐octylfluorene‐alt‐(1,4‐phenylene‐((4‐sec‐butylphenyl)imino)‐1,4‐phenylene))/poly(9,9‐di‐n‐octylfluorene‐alt‐benzothiadiazole) (TFB/F8BT) and poly(3‐hexylthiophene)/methanofullerene([6,6]‐phenyl C61 butyric acid methyl ester) (P3HT/PCBM), and incorporating them into light‐emitting diodes (LEDs) and photovoltaic (PV) cells, respectively. For both types of device, bilayer devices fabricated with this transfer‐printing technique show equal, if not superior, performance to either blend devices or bilayer devices fabricated by other techniques. This indicates well‐controlled organic‐organic interfaces achieved by the transfer‐printing technique. Furthermore, this transfer‐printing technique allows us to study the nature of the excited states and the transport of charge carriers across well‐defined organic interfaces, which are of great importance to organic electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号