首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present report studies on the flow pattern transitions during vertical air water downflow through millichannels (0.83 ≤ Eötvös no. ≤ 20.63). Four basic flow patterns namely falling film flow, slug flow, bubbly flow, and annular flow are observed in the range of experimental conditions studied and their range of existence has been noted to vary with tube diameter and phase velocities. Based on experimental observations, phenomenological models are proposed to predict the transition boundaries between adjacent patterns. These have been validated with experimental flow pattern maps from the present experiments. Thus the study formalizes procedure for developing a generalized flow pattern map for gas‐liquid downflow in narrow tubes. © 2016 American Institute of Chemical Engineers AIChE J, 63: 792–800, 2017  相似文献   

2.
New experimental data for air–water flow in a horizontal square cross‐section channel (H = 24.25 mm) is presented, including data on liquid hold‐up, gas and liquid velocities, and wave velocities and frequencies. For the majority of gas and liquid flow rates studied, the regime observed was pseudo‐slug. Using visualization studies it was possible to identify wavy‐stratified and pseudo‐slug flows. For the pseudo‐slug regime new correlations were obtained for liquid hold‐up, for gas and liquid velocities as a function of the ratio between gas and liquid mass flow rates, and for the frequency of roll‐waves as a function of gas and liquid mass flow rates.  相似文献   

3.
The effect of tube diameter on two‐phase flow patterns was investigated in circular tubes with inner diameters of 0.6, 1.2, 1.7, 2.6, and 3.4 mm using air and water. The gas and liquid superficial velocity ranges were 0.01–50 and 0.01–3 m/s, respectively. The gas and liquid flow rates were measured and the two‐phase flow pattern images were recorded using high‐speed CMOS camera. The flow patterns observed were dispersed bubbly, bubbly, slug, slug‐annular, wavy‐annular, stratified, and annular flows. These flow patterns were not observed in all the test diameters, but were found to be unique to particular tube diameters, confirming the effect of tube diameter on the flow pattern. The data obtained were compared to existing experimental data and flow regime transition maps which show generally reasonable overall agreement at the larger diameters, but significant differences were observed with the smaller diameter tubes.  相似文献   

4.
Flow patterns of liquid‐liquid two‐phase fluids in a new helical microchannel device were presented in this paper. Three conventional systems were considered: kerosene‐water, n‐butyl acetate‐water, and butanol‐water. Six different flow patterns, slug flow, continuous parallel flow, discontinuous deformation parallel flow, discontinuous deformation parallel‐droplet flow, droplet‐slug flow, and filiform‐droplet flow, were observed. The influence of interfacial tension, microchannel structure, and rotation rate on two‐phase flow patterns were studied, and a universal flow pattern map was presented and discussed. The systems without mass transfer (0.1 g/g (10 %) tri‐n‐butyl phosphate (TBP)‐water, 0.2 g/g (20 %) TBP‐water, and 0.8 g/g (80 %) TBP‐water) and the system with mass transfer (0.8 g/g (80 %) TBP‐0.62 g/g (62 %) H3PO4) were used to verify the validity of the proposed universal flow pattern map in predicting flow patterns. The results showed that the former compared with the latter can be predicted more accurately by the universal flow pattern map.  相似文献   

5.
Gas hydrate formation is a main flow assurance concern in oil and gas production. Understanding the effects of the introduction of solid particles in the slug flow is essential to improve the efficiency and safety of multiphase production. The purpose of the present work is the experimental characterization of solid‐liquid‐gas slug flow with the presence of dispersed hydrate‐like particles. Experimental tests were carried out with inert polyethylene particles of 0.5‐mm diameter with density similar to gas hydrates (938 kg/m3). The test section comprised a 26‐mm ID, 9‐m length horizontal duct of transparent Plexiglas. High Speed Imaging and resistivity sensors was used to analyze the slug flow unit cell behavior due to the introduction of the solid particles and to measure the unit cell translational velocity, the slug flow frequency, the bubble and slug lengths, and the phase fractions. Two distinct concentrations of solid particles were tested (6 and 8 g/dm3). © 2018 American Institute of Chemical Engineers AIChE J, 64: 2864–2880, 2018  相似文献   

6.
Flow distribution during gas–liquid–liquid upflow through a vertical pipe is investigated. The optical probe technique has been adopted for an objective identification of flow patterns. The probability density function (PDF) analysis of the probe signals has been used to identify the range of existence of the different patterns. Dispersed and slug flow have been identified from the nature of the PDF, which is bimodal for slug flow and unimodal for dispersed flow. The water continuous, oil continuous, and emulsion type flow distributions are distinguished on the basis of the PDF moments. The method is particularly useful at high flow rates where visualization techniques fail. Based on this, a flow pattern detection algorithm has been presented. Two different representations of flow pattern maps have been suggested for gas–liquid–liquid three phase flow. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3362–3375, 2014  相似文献   

7.
Sand holdup is one of the most important hydrodynamic parameters that is needed for performance estimation, design, operation and control of oil‐gas‐sand multiphase production and pipeline transportation systems. The performance of oil‐gas‐sand multiphase flow can be reliably evaluated by measuring the sand holdup in such oil‐gas‐sand multiphase production and pipeline transportation systems. In the present work, a local sand holdup has been measured under conditions analogous to the horizontal oil‐gas‐sand three‐phase slug flow in pipelines. Accurate local sand particle holdup measurements were performed by the digital imaging technique. The results revealed the influence of operating conditions such as gas and liquid velocities and sand particle loading on the distribution of the local sand particle holdup in the horizontal air‐water‐sand multiphase slug flow pipe. Explanations for the observed trends are provided, shedding light on the general structures and mechanisms of the distribution of the local sand holdup in a horizontal oil‐gas‐sand three‐phase slug flow. Such information on the horizontal air‐water‐sand three‐phase slug flow mechanisms are essential to advance the mechanistic approach for predicting local sand holdup distribution and the subsequent effect on sand deposition during multiphase petroleum production and transfer operations.  相似文献   

8.
The present study is aimed at an investigation of the pressure drop characteristics during the simultaneous flow of a kerosene‐water mixture through a horizontal pipe of 0.025 m diameter. Measurements of pressure gradient were made for different combinations of phase superficial velocities ranging from 0.03–2 m/s such that the regimes encountered were smooth stratified, wavy stratified, three layer flow, plug flow and oil dispersed in water, and water flow patterns. A model was developed, which considered the energy minimization and pressure equalization of both phases.  相似文献   

9.
J. Xu  Y. Wu  Y. Chang 《化学工程与技术》2009,32(12):1922-1928
In this work, an experimental study was made on gas injection into an oil‐water flow in horizontal pipes with two unequal pipe diameters. Special attention was given to the influence of gas injection on the average in‐situ oil fraction. Measurements were made for input water flow rates of 1.25–5 m3/h, input oil flow rates of 0–8 m3/h and input gas flow rates of 0–9 m3/h. It was found that gas injection has a considerable influence on the in‐situ oil fraction. In general, a small increase in the rate of air injection leads to greatly decreasing in‐situ oil fractions. The in‐situ oil fraction with gas injection decreases to a greater extent than that without gas injection, at the same input liquid flow rates. At a given input water flow rate, the value of the in‐situ oil fraction in the pipe with the larger diameter is higher than that in the pipe with the smaller diameter. Furthermore, the drift flux models were extended to predict the average in‐situ fractions of the oil phase in the intermittent three‐phase flow regimes. A good agreement is obtained between theory and data, especially for the in‐situ oil fraction range of 0.2–1.0.  相似文献   

10.
The stratified configuration is one of the basic and most important distributions during two phase flow through horizontal pipes. A number of studies have been carried out to understand gas‐liquid stratified flows. However, not much is known regarding the simultaneous flow of two immiscible liquids. There is no guarantee that the information available for gas‐liquid cases can be extended to liquid‐liquid flows. Therefore, the present work attempts a detailed investigation of liquid‐liquid stratified flow through horizontal conduits. Gas‐liquid flow exhibits either smooth or wavy stratified orientations, while liquid‐liquid flow exhibits other distinct stratified patterns like three layer flow, oil dispersed in water, and water flow, etc. Due to this, regime maps and transition equations available for predicting the regimes in gas‐liquid flow cannot be extended for liquid‐liquid cases by merely substituting phase physical properties in the equations. Further efforts have been made to estimate the in‐situ liquid holdup from experiments and theory. The analysis considers the pronounced effect of surface tension, and attempts to modify the Taitel‐Dukler model to account for the curved interface observed in these cases. The curved interface model of Brauner has been validated with experimental data from the present work and those reported in literature. It gives a better prediction of liquid holdup in oil‐water flows and reduces to the Taitel‐Dukler model for air‐water systems.  相似文献   

11.
Gas‐liquid‐liquid slug flow in a capillary reactor is a promising new concept that allows one to incorporate gas‐liquid reaction, liquid‐liquid extraction, and facile catalyst separation in a single unit. In order to assess the performance of a gas‐liquid‐liquid slug flow reactor, it is necessary to predict the slug velocity and pressure drop to ascertain residence times and reaction rates. New empirical models for velocity and pressure drop were developed based on existing models for two‐phase gas‐liquid and liquid‐liquid slug flows, and these were validated experimentally.  相似文献   

12.
Liquid‐liquid two‐phase flows are encountered in several process industries, multiphase reactors and oil industries. In each of these applications, identification of flow patterns poses a challenging problem and many efforts are directed towards developing suitable devices for this purpose. In the present work, attempts have been made to use pressure gradient and transient pressure signals to study flow patterns during the simultaneous flow of two liquids through a horizontal pipe. It is observed that the slope of the pressure gradient curves as a function of fluid superficial velocities is a weak function of the flow pattern. However, the variation of the slope with the pattern transition is much more significant when the pressure gradient is normalized with respect to only kerosene flow through the pipe (ΔpTPpKO). Further attempts have been made to identify flow patterns from transient pressure signals and the statistical analysis of these random signals has been undertaken. The PDF analysis and the wavelet multiresolution technique have been adapted to explain the signals in detail. The flow regimes identified are smooth stratified, wavy stratified, plug flow, ‘three‐layer' flow, ‘oil dispersed in water and water' and ‘oil and water in oil' flow patterns. The signal characteristics are depicted for each flow pattern.  相似文献   

13.
J. Xu  Y. Wu  Y. Chang  J. Guo 《化学工程与技术》2008,31(10):1536-1540
An experimental investigation was conducted to study the holdup distribution of oil and water two‐phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m3) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m3/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil‐water two‐phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.  相似文献   

14.
A dehydration of fructose in the water/methyl isobuthyl ketone (MIBK) biphasic system can yield 5‐hydroxymethylfurfural (HMF) to be successfully extracted into the organic MIBK phase. The HMF production and yield in MIBK phase was discussed by using a simplified model taking into consideration of the slug flow. The extraction resistance of HMF across the interface between water and MIBK depended on the line velocity and the flow rate ratio. It was likely that the velocity field generated in the slug flow contributed to an increase in the mass transfer of HMF. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2135–2143, 2016  相似文献   

15.
The oil‐water core annular flow through a U‐bend is simulated by computational fluid dynamics based on the Eulerian model. More flow parameters and the effect of annulus thickness on core annular flow are discussed. Conformity between the simulated and experimental data is observed. The development of oil‐water core annular flow in the U‐bend is analyzed, and the distributions of pressure and velocity are discussed. Results of the Eulerian model and volume‐of‐fluid (VOF) model are compared and the influence of oil properties on total pressure gradient is investigated. The suitable range of annulus thickness is identified. The results provide suitable operation conditions for designing the U‐bend pipefitting.  相似文献   

16.
Hydrodynamic and mass transfer characteristics of water–air system in a co‐current downflow contacting column (CDCC) were studied for various nozzle diameters at different superficial gas velocities and liquid re‐circulation rates. Gas hold‐up and liquid‐side mass transfer coefficient increased with increasing superficial gas velocity and liquid flow rate but decreased with increasing nozzle diameter. It is shown that correlations developed, which are based on liquid kinetic power per liquid volume present in the column, and superficial gas velocity explains gas hold‐up and the mass transfer coefficient within an error 20% for all gas and liquid flow rates and nozzle diameters used. The constants of correlations for gas hold‐up and mass transfer coefficient were found to be considerably different from other gas–liquid contacting systems. © 2003 Society of Chemical Industry  相似文献   

17.
The prediction of liquid–liquid two‐phase flow at a horizontal dividing T‐junction is re‐investigated, focusing on a stratified orientation of the liquids. Kerosene (as oil) and water as the test fluids of previous studies are used to predict the distribution of oil and water in a 0.025‐m diameter pipe and tee. In addition to the previously studied models, attempts are made to predict the split for liquid–liquid systems by the already known energy minimization. The earlier model, formulated from geometrical considerations and force balance resulting from centripetal as well as inertial forces, is refurbished by the addition of energy minimization for the calculation of phase depth.  相似文献   

18.
19.
An experimental investigation is carried out to study the transition from stratified to slug flow and the development of slug flow. The variation of Lockhart–Martinelli parameter with the non‐dimensional liquid height is established based on the experimental data. A correlation is developed for the liquid height as a function of superficial gas and liquid Reynolds number. The liquid height is observed to increase up to some level depending on the mass flow rate, beyond which there is a sudden jump in the height leading to the formation of slug. This critical liquid height is the limiting condition for the evolution of slug. Below the critical height a stable stratified flow is observed. The critical height for stability limit of stratified flow is established experimentally for various combinations of mass flow rates of the primary and secondary phases. © 2011 Canadian Society for Chemical Engineering  相似文献   

20.
Asphaltene is a group of complex compounds commonly present in petroleum reservoir fluids. It is conceivable that asphaltenes strongly interact with water through hydrogen bonding, affecting phase behavior of water/oil mixtures with/without forming an asphaltene‐rich phase. In this research, the cubic‐plus‐association equation of state (CPA EOS) is applied to multiphase behavior resulting from self‐ and cross‐associations of asphaltenes and water in petroleum fluids. This article also presents a new correlation for binary interaction parameters for water with n‐alkanes for the CPA EOS by using three‐phase data for water/n‐alkane binaries. A method is proposed to characterize mixtures of asphaltene‐containing oil with water using the CPA EOS. Results show that the CPA EOS can represent multiphase behavior for water/oil mixtures with up to four equilibrium phases: asphaltene‐rich, solvent‐rich, aqueous, and vapor phases. Case studies include bitumen/water mixtures, involving asphaltene‐water emulsion, water solution in bitumen, and their continuous transition with varying temperature. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3429–3442, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号