首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
粉煤灰酸浸提铝及其动力学   总被引:5,自引:0,他引:5  
对KF为助剂焙烧活化粉煤灰酸浸提铝过程进行了研究,考察了粉煤灰焙烧活化和盐酸浸出条件对粉煤灰中铝浸出率的影响及其浸出过程动力学. 结果表明,焙烧活化优化条件为:时间1 h、温度800℃、粉煤灰与KF质量比为20:4. 浸出温度90℃、浸出时间2 h、盐酸浓度4 mol/L、液固比4 mL/g的条件下,铝提取率达到92.46%. 粉煤灰烧结产物加热酸浸过程符合收缩未反应核模型,反应级数为0.3718,反应活化能为43.49 kJ/mol,过程速率为化学反应速率控制.  相似文献   

2.
高铝粉煤灰中莫来石及硅酸盐玻璃相的热分解过程   总被引:10,自引:0,他引:10  
研究了高铝粉煤灰-Na2CO3体系中莫来石(3Al2O3·2SiO2)和硅酸盐玻璃相在焙烧过程中可能发生的化学反应,并以热力学计算为指导,研究了物料配比、焙烧温度、焙烧时间对反应的影响.实验结果表明:在Na2CO3与粉煤灰的质量比为1.0、焙烧温度为880℃、恒温1h时,粉煤灰中莫来石(3Al2O3·2SiO2)和硅酸盐玻璃相的分解率可达到98%以上.对粉煤灰中莫来石及硅酸盐玻璃相的热分解过程的动力学研究结果表明,该过程符合CrankGinstling-Braunshtein方程,由实验结果计算,其表观活化能为149.19kJ·mol-1.  相似文献   

3.
城市污水厂污泥制备陶粒滤料及其特性   总被引:4,自引:0,他引:4  
以城市污水处理厂脱水污泥作为主要原料,添加粉煤灰和粘土烧制陶粒滤料,考察了烧制过程中各主要因素(干燥时间、预热温度、预热时间、焙烧温度和焙烧时间)对产品性能(比表面积、堆积密度和颗粒密度)的影响,最终结合正交实验确定了污泥作为主要原料烧制陶粒的最佳工艺条件. 结果表明,污泥与辅料的最佳质量配比为:污泥:粉煤灰:粘土=2:3:1,烧制陶粒的最佳工艺条件为:干燥时间1 h,预热温度300℃,预热时间20 min,焙烧温度1100℃,焙烧时间8 min,此时制得的陶粒比表面积为4.222 m2/g,堆积密度为635 kg/m3,颗粒密度为1146 kg/m3,孔隙率为22.4%,盐酸可溶率为0.18%,破碎率为0.4%.  相似文献   

4.
利用机械研磨-碳酸钠混合焙烧对粉煤灰进行活化,探讨了机械研磨时间对粒度和真密度的影响,研究了焙烧条件对铝浸出率的影响。结果表明,在机械研磨及碳酸钠混合焙烧联合作用下,粉煤灰中惰性硅铝组分可得到充分活化。最佳活化工艺参数为:球磨时间40 min,灰碱质量比1∶0.40,焙烧温度875℃,焙烧时间2 h。烧结熟料主要成分为霞石相(NaAlSiO_4)。  相似文献   

5.
利用机械研磨-碳酸钠混合焙烧对粉煤灰进行活化,探讨了机械研磨时间对粒度和真密度的影响,研究了焙烧条件对铝浸出率的影响。结果表明,在机械研磨及碳酸钠混合焙烧联合作用下,粉煤灰中惰性硅铝组分可得到充分活化。最佳活化工艺参数为:球磨时间40 min,灰碱质量比1∶0.40,焙烧温度875℃,焙烧时间2 h。烧结熟料主要成分为霞石相(NaAlSiO_4)。  相似文献   

6.
以碳酸钠为活化剂活化粉煤灰,考察原料配方、焙烧条件(温度、时间)、酸浸条件(用量、浓度)、溶胶一凝胶条件(初始浓度、温度)对SiO2产率的影响.结果表明:(1)当m粉煤灰∶m碳酸钠≥1∶1.8或焙烧温度超过850℃时,样品发生烧结无法从坩埚中取出,面致酸浸分解率和SiO2产率为零;(2)粉煤灰在没有助剂条件下进行高温活化,酸浸分解率为24.13%,无SiO2产品;(3)盐酸浓度和溶胶-凝胶液的初始浓度对SiO2的产率基本无影响;(4)温度是影响溶胶-凝胶的显著因素;(5)最佳工艺条件为∶m粉煤灰∶m碳酸钠=1∶1.2、焙烧温度800℃、焙烧时间2h;凝胶-凝胶水浴温度94℃,SiO2的产率可达85.35%.  相似文献   

7.
昆明电厂粉煤灰富含氧化铝、氧化铁,提取金属氧化物的关键是破坏莫来石晶相.对碳酸氢钠改性粉煤灰焙烧过程进行了热力学分析,绘制了各反应Gibbs自由能变与温度的关系图.结果表明,在碳酸氢钠稳定的温度范围内碳酸氢钠不能对粉煤灰进行改性,碳酸氢钠的分解产物碳酸钠在600 K以上温度会逐渐对粉煤灰进行改性.改性产物经XRD分析表征为酸溶性优良的铝硅酸钠.考察了以碳酸氢钠改性粉煤灰焙烧工艺条件对铝铁浸出率的影响.结果表明,改性剂与粉煤灰的质量比为0.7:1,焙烧时间为45 min,焙烧温度为800℃,铝、铁的浸出率分别达94.78%、91.55%.  相似文献   

8.
吴迪秀  罗柳  贾玉娟  程伟 《硅酸盐通报》2019,38(6):1873-187
为利用粉煤灰中的铝、硅资源制备高性能吸附材料,本研究以贵州某地粉煤灰为原料,采用“碱熔融-水热合成法”合成A型沸石,并考察了合成沸石对溶液中Cu2的吸附性能.研究运用单因素法考察不同碱灰比、焙烧时间、晶化温度及晶化时间对沸石合成效果的影响,采用扫描电镜(SEM)、X射线衍射仪(XRD)对合成沸石表面形貌和晶体特征进行表征.在此基础上,考察了粉煤灰合成沸石对模拟料液中Cu2的吸附效果.结果 表明:当粉煤灰原灰中铝硅比约为1∶1,在碱灰比为1.3∶1、焙烧温度650℃、焙烧时间60 min、晶化温度100℃、晶化时间8h条件下,合成了晶型较为理想的A型沸石产品,合成沸石对Cu2吸附效果较好,对溶液中Cu2+的去除率大于95%.  相似文献   

9.
以内蒙古高铝粉煤灰(Al2O3/SiO2质量比1.24)为原料,采用Na2CO3焙烧活化-盐酸浸取法提铝,考察了焙烧温度、时间和碳酸钠/粉煤灰质量比的影响,对焙烧活化及酸浸提铝动力学进行研究,分析了提铝机理. 结果表明,高温活化条件下,粉煤灰中的莫来石及SiO2与Na2CO3反应生成NaAlSiO4, Al2O3和Na2SiO3,酸浸后铝浸出率超过94.99%;活化过程符合Crank-Ginstling-Braunshtein模型,表观活化能为117.06 kJ/mol,活化反应受固膜扩散控制.  相似文献   

10.
通过单因素实验和正交实验研究了铝土矿硫酸焙烧与水浸提铝铁过程中焙烧温度、焙烧时间和酸/矿摩尔比对铝和铁提取率的影响. 结果表明,在酸/矿摩尔比3.75:1、焙烧温度325℃,焙烧时间2.5 h的条件下,Al提取率达98%, Fe提取率达80%,各因素对铝铁提取率的影响顺序为:酸/矿摩尔比>焙烧温度>焙烧时间. 该工艺具有焙烧温度低、金属提取率高等特点,对铝土矿的开发利用具有重要的意义.  相似文献   

11.
煤矸石或粉煤灰与赤泥协同钠化还原焙烧均可实现其所含铁、铝、硅等元素的形态转化,使其易于分离回收;但对于它们分别与赤泥协同钠化还原焙烧反应差异性及机制的研究目前尚未见报道。采用X射线衍射分析方法,分别考察了煤矸石-赤泥、粉煤灰-赤泥体系钠化还原焙烧过程中,气氛类型、钠助剂添加量、焙烧温度、焙烧时间对还原焙烧产物物相组成的影响规律,并对两个反应体系中铁磁化效果及铝硅活化效果的差异性进行分析。结果表明:在钠化还原焙烧过程中,煤矸石-赤泥、粉煤灰-赤泥体系均可同步实现含铁物相的磁化和铝硅物相的活化,且随着钠助剂添加量、焙烧温度、焙烧时间的变化,含铁物相和铝硅物相呈现规律性变化;在相同铁磁化和铝硅活化效果前提下,煤矸石-赤泥体系所需钠助剂添加量、焙烧温度和焙烧时间均略低于粉煤灰-赤泥体系,这主要与煤矸石、粉煤灰中所含还原性物质和铝硅矿物的赋存形态、含量及微观结构有关。研究将为煤矸石、粉煤灰等煤基固废与赤泥协同钠化还原焙烧回收有价元素的原料筛选提供理论指导。  相似文献   

12.
粉煤灰与硫酸氢铵焙烧反应动力学   总被引:1,自引:0,他引:1  
提出了NH4HSO4法焙烧粉煤灰提取Al2O3的新方法,考察了焙烧温度、粉煤灰中Al2O3与NH4HSO4摩尔比对粉煤灰中Al反应率的影响,研究了粉煤灰与NH4HSO4焙烧反应动力学. 结果表明,粉煤灰与NH4HSO4焙烧反应受固体产物层扩散控制,300, 350, 400℃下的反应速率常数分别为1.25′10-3, 1.56′10-3, 1.89′10-3 min-1,反应活化能为17.19 kJ/mol,反应动力学方程为1-2/3a-(1-a)2/3=0.0422exp[-17190/(RT)]t,最佳工艺条件为:焙烧温度400℃,Al2O3与NH4HSO4摩尔比1:8,焙烧时间60 min;该条件下Al反应率达90%以上,主要产物为NH4Al(SO4)2和NH4Fe(SO4)2.  相似文献   

13.
[目的]通过实验探讨甲氰菊酯农药废水处理的新方法.[方法]采用正交试验及单因素试验确定粉煤灰基混凝剂制备及处理甲氰菊酯农药废水的最佳条件.[结果]粉煤灰基混凝剂制备的最佳条件:粉煤灰/酸比为1∶4(m/V),粉煤灰/碱比为1∶3(m/V),熟化温度为40℃;处理废水的最佳条件:投加量5 L/100L,温度为30℃,pH值为4,反应时间为3h,CODCr去除率为50.91%.[结论]粉煤灰基混凝剂处理甲氰菊酯农药废水效果良好,值得进一步探讨.  相似文献   

14.
利用粉煤灰制备高纯硫酸铝工艺研究   总被引:1,自引:0,他引:1  
酸浸法是粉煤灰提铝的重要方法之一.以粉煤灰为原料,经球磨活化、硫酸浸出、浓缩结晶、除铁等工艺制备出高纯硫酸铝.研究了粉煤灰粒度、酸液浓度和反应温度对Al2O3提取率的影响,并提出了利用乙醇进行硫酸铝除铁的工艺方法.当粉煤灰的粒度达到201μm,硫酸溶液浓度为50%~60%,反应温度200~240℃时,Al2O3提取率可...  相似文献   

15.
以工业固废赤泥、粉煤灰以及盐酸等为原料,采用酸浸的工艺制备聚硅氯化铝铁絮凝剂。初步研究了该絮凝剂的生产工艺条件及产品对皮革废水的絮凝效果。实验结果表明:制备聚硅氯化铝铁絮凝剂的最佳工艺条件为粉煤灰和赤泥的质量比为1∶2,焙烧温度为850 ℃,液固体积质量比为5 mL/g,在此条件下原料中铁的最大浸出率为73.9%。絮凝剂对皮革废水的最佳投放量为250 mg/L,产品对皮革废水COD、SS的去除率可高达73.91%、97.86%,处理过的水透光度高。  相似文献   

16.
碳酸钠焙烧粉煤灰是一种反应温度低、氧化铝溶出率高,且可同步实现铝、硅高效分离的活化方式,然而该活化过程中所需助剂耗量较大,成为其大规模产业化应用的瓶颈.借鉴高温(1200~1300 ℃)碱石灰烧结活化粉煤灰工艺,在中温(600~1000 ℃)条件下,采用正交实验和单因素实验方法,分别研究了氧化钙添加对碳酸钠焙烧活化粉煤灰后氧化铝溶出率的影响.结果表明,在中温条件下可通过添加一定比例的氧化钙来部分替代碳酸钠,当m(CFA:Na2CO3:CaO)=1:0.6:0.2时,即可使粉煤灰中的氧化铝溶出率达90%以上.通过傅里叶变换红外光谱(FT-IR)、X射线衍射分析(XRD)进一步研究发现,氧化钙之所以可以部分替代碳酸钠,主要是由于低聚合度的硅酸钙形成所导致的.  相似文献   

17.
为实现准东煤灰的绿色化综合利用,笔者研究设计了从准东煤灰中制取氧化铝和白炭黑的工艺流程,确定了最佳工艺条件,并通过SPSS双变量分析比较不同影响因素对提取率影响程度。试验采用准东煤--将军庙原煤,破碎并用马弗炉模拟煤粉炉静态燃烧方式制取灰样。准东煤灰的成分分析和元素分析表明:SiO2占48.84%,Al2O3占31.26%。参照标准制备灰样,对灰样进行SEM分析,发现粘黏性严重,因此试验前先进行机械研磨。采用煤灰与硫酸铵焙烧法制备氧化铝,工艺分为焙烧过程和酸浸过程。因滤液中含有大量杂质铁、钙等元素,采用pH调节法除杂并对除杂效果进行检验,检验结果为除杂率接近100%。从提铝渣中制备白炭黑分为碱浸过程和多次碳分过程。在提铝工艺焙烧过程中,通过提铝率变化曲线及节能角度确定了各因素的最佳试验条件为:焙烧温度600℃,焙烧时间60 min,焙烧配料比1∶6;在提铝工艺酸浸过程中,得到最佳试验条件为:酸浸温度60℃、酸浸时间20 min、H2SO4浓度0.2 mol/L、酸浸液固比50。从提铝渣制备白炭黑研究中,通过SEM观察到提铝渣疏松多孔,有利于进一步的提硅试验。通过XRD对提铝渣分析,得出提铝渣中含有大量硅、钙元素;用K值法(RIR法)求得提铝渣中Si含量及经提铝后的Si损失率为7.64%。得出碱浸过程最佳试验条件为:碱浸温度60℃、碱浸时间30 min、碱浸NaOH浓度3 mol/L、碱浸液固比70,此时Si提取率为99%。采用多次碳分法进行提硅能够满足不同硅含量纯度要求,得到最佳碱浸工艺条件为碳分pH=9.5、CO2通气速率24 m L/min、碳分NaOH浓度0.2 mol/L、碳分液固比80。通过双变量相关性分析,得到各因素对提铝率、SiO2提取率及H2SiO3沉淀率影响程度大小分别为:焙烧温度>焙烧时间>焙烧配料比,酸浸时间>酸浸温度>H2SO4浓度>酸浸液固比,碱浸液固比>碱浸温度>NaOH浓度>碱浸时间,碳分pH>碳分液固比>碳分NaOH浓度>CO2通气速率。通过经济性及可行性分析,说明提出的工艺能有效实现准东煤灰的绿色化综合利用。从提铝后的滤液中重新提取(NH4)2SO4,实现生产原料的再利用;碳分过程后的Na2CO3溶液可通过加入石灰苛化的方式实现NaOH可循环利用于提取工艺生产;本工艺除生产氧化铝和白炭黑外,还能获得Na2SO4等附加产品。  相似文献   

18.
粉煤灰制备片状氧化铝粉体   总被引:4,自引:2,他引:2  
谭宏斌 《陶瓷》2010,(2):20-22
在粉煤灰中加入一定量硫酸铝为原料,以硫酸钠为反应介质,研究了不同温度对试样产物的影响。结果表明:在1200℃温度条件下保温3h,试样的主要物相为α—Al2O3和硅铝酸钠,用HF酸溶去硅铝酸钠和试样中的杂质相,得到了较纯的片状α—Al2O3,片晶大小为4~7μm,厚度为0.1~0.3μm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号