首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
In the present study, an attempt has been made to improve cell supportive property of chitosan/nano beta tri‐calcium phosphate (β‐TCP) composite scaffolds by modification of scaffold surface with fibrin using ethyl‐3‐(3‐dimethylaminopropyl) carbodimide (EDC) as crosslinking agent. The developed fibrin conjugated chitosan/nano β‐TCP composite scaffolds possess desired pore size and porosity in the range of 45–151 µm and 81.4 ± 4.1%, respectively. No significant change in compressive strength of scaffolds was observed before and after fibrin conjugation. The calculated compressive strength of fibrin conjugated and non‐conjugated chitosan/nano β‐TCP scaffolds are 2.71 ± 0.14 MPa and 2.67 ± 0.11 MPa, respectively. Results of cell culture study have further shown an enhanced cell attachment, cell number, proliferation, differentiation, and mineralization on fibrin conjugated chitosan/nano β‐TCP scaffold. The uniform cell distribution over the scaffold surface and cell infiltration into the scaffold pores were assessed by confocal laser scanning microscopy. Furthermore, higher expression of osteogenic specific genes such as bone sialo protein, osteonectin, alkaline phosphatase, and osteocalcin (OC) on fibrin conjugated scaffolds was observed when compared to scaffolds without fibrin. Altogether, results indicate the potentiality of developed fibrin conjugated composite scaffolds for bone tissue engineering applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41534.  相似文献   

2.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

3.
It is highly challenging to fabricate bioceramic scaffolds mimicking architecture and mechanical strength of cancellous bone. Gyroid structure, which is based on triply periodic minimal surface, highly resembles the architecture of cancellous bone. Herein, β-tricalcium phosphate (β-TCP) bioceramic scaffolds with gyroid structure were fabricated by stereolithography (SLA) 3D printing. The SLA 3D printing ensured high precision of ceramic part. The porosity (51–87%), pore size (250 – 2400 µm), pore wall thickness (< 300 µm) and compressive strength (0.6 – 16.8 MPa) of gyroid bioceramic scaffolds were readily adjusted to match various sites of cancellous bone. The gyroid bioceramic scaffolds were more favorable for cell proliferation than the grid-like bioceramic scaffolds. The cancellous-bone-mimicking gyroid bioceramic scaffolds with tunable architecture and mechanical strength were expected to efficiently repair the target bone defects.  相似文献   

4.
Successful construction of small-diameter double-layer vascular scaffolds (SDVSs) whose inner diameters are less than 1.5 mm, especially those with multilayer mimic structures, remains a challenge in vascular tissue engineering. In this study, poly(L-lactide-co-caprolactone) (PLCL)/poly(Ɛ-caprolactone) (PCL)/tussah silk fibroin (TSF) SDVSs with a double-layer structure are prepared by one-step method based on friction twisting core-spun electrospinning technology. The constructed PLCL/PCL SDVSs grafted TSF have an obvious double-layer structure; tube wall thickness 524 ± 28 µm; and inner tube diameter 1390 ± 40 µm. Compared with traditional nanofiber vascular scaffolds (TS), the axial and radial tensile strengths of PLCL/PCL SDVSs grafted TSF increase by 86% and 34%, respectively. They also show good scaffold elastic recovery and burst pressure (BP) (8505 ± 875 mmHg). Compared with the PLCL/PCL SDVSs, the inner and outer layers of PLCL/PCL SDVSs grafted TSF show good hydrophilicity and protein adsorption performance. The in vitro cell viability results indicate that the inner and outer layers of PLCL/PCL SDVSs grafted TSF show enhanced proliferation and adhesion of vein endothelial cells (VECs) and smooth muscle cells (SMCs), respectively. Therefore, the successful preparation of PLCL/PCL SDVSs grafted TSF provides more possibilities for the clinical transplantation of small-diameter vascular scaffolds.  相似文献   

5.
The microstructure of the tissue has a very important determining effect on its performance. Herein, two calcium phosphate cement (CPC)/small intestinal submucosa(SIS) composites bionic bone scaffolds with different microstructures were fabricated by rolling or/ and assembling method. The microstructure, 3D morphology, the crystal phase and mechanical properties of the scaffolds were investigated by micro CT, XRD, FIIR, SEM and electronic universal testing machines respectively. The results showed that the pore size of all scaffolds are in the range of 100–400?µm, which are beneficial to cells growth, migration, and tissue vascularization. Their porosity and the specific surface area were 14.53?±?0.76%, 8.74?±?1.38?m2/m3 and 32?±?0.58%, 26.75?±?2.69?m2/m3 separately. The high porosity and the large specific surface area can provide a larger space and contact area for cells adhesion and proliferation. Meanwhile, compressive strength of the scaffolds soaked were 10?MPa and 27?MPa, about 1.2 folds and 3.2 folds of the original scaffolds, respectively. The results are derived from different microstructures of the scaffolds and chemical bonds between SIS and new phases (hydroxyapatite), and the scaffolds performance steadily increased at near the physiological conditions. Finally, biocompatibility of the scaffolds was evaluated by CCK8, bionic microstructure scaffolds are no cytotoxicity and their biocompatibility is favorable. Based on the microstructure, compressive strength and cytotoxicity of the scaffolds, bionic Harvarsin microstructure CPC/SIS composite scaffold is expected to turn into a scaffold with the excellent properties of real bone.  相似文献   

6.
Nanofibrous biocomposite scaffolds of chitosan (CS), PVA, and hydroxyapatite (HA) were prepared by electrospinning. The scaffolds were characterized by FTIR, SEM, TEM, and XRD techniques. Tensile testing was used for the characterization of mechanical properties. Mouse fibroblasts (L929) attachment and proliferation on the nanofibrous scaffold were investigated by MTT assay and SEM observation. FTIR, TEM, and XRD results showed the presence of nanoHA in the scaffolds. The scaffolds have porous nanofibrous morphology with random fibers in the range of 100–700 nm diameters. The CS/PVA (90/10) fibrous matrix (without HA) showed a tensile strength of 3.1 ± 0.2 MPa and a tensile modulus 10 ± 1 MPa with a strain at failure of 21.1 ± 0.6%. Increase the content of HA up to 2% increased the ultimate tensile strength and tensile modulus, but further increase HA up to 5–10% caused the decrease of tensile strength and tensile modulus. The attachment and growth of mouse fibroblast was on the surface of nanofibrous structure, and cells' morphology characteristics and viability were unaffected. A combination of nanofibrous CS/PVA and HA that mimics the nanoscale features of the extra cellular matrix could be promising for application as scaffolds for tissue regeneration, especially in low or nonload bearing areas. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
Biomimetic scaffolds have been investigated for vascular tissue engineering for many years. However, the design of an ideal biodegradable vascular scaffold is still in progress. The optimization of poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) blend composition was performed to provide the designed scaffolds with adequate mechanical properties and favorable biocompatibility for the intended application. By systematically varying the weight ratio of PLGA and SF, we could control fiber diameter and hydrophilicity as well as mechanical properties of the fibrous scaffolds. These scaffolds with a weight ratio of PLGA/SF at 70/30 exhibited excellent performance, such as tensile strength of 1.5 ± 0.1 MPa, and elongation at break of 77.4 ± 6.4%. Therefore, PLGA/SF scaffold with a weight ratio of 70/30 was chose as the matrix because it matches at best the mechanical demands for application in vascular tissue engineering. In order to promote the endothelialization of electrospun scaffolds, we used pEGFP-ZNF580 plasmid (pZNF580) complexes to modify the electrospun scaffolds by electrospraying technique. pZNF580 complexes were prepared from pZNF580 and microparticles (MPs) of amphiphilic copolymer methoxy-poly(ethylene glycol)-block-poly(3(S)-methyl-2,5-morpholinedione-co-glycolide)-graft-polyethyleneimine. Negatively charged PLGA/SF fibers adsorbed the positively charged MPs via physical deposition and electrostatic force. Scanning electron microscope image indicated the forming of composite scaffold and MPs did not change fiber’s shape and 3-D structure. Cell culture experiments demonstrated that the scaffolds modified with MPs/pZNF580 complexes could promote human umbilical vein endothelial cell growth and inhibit human umbilical artery smooth muscle cell proliferation. Our results indicated that the composite scaffolds with MPs/pZNF580 complexes could be used as a potential scaffold for vascular tissue engineering.  相似文献   

8.
《Ceramics International》2016,42(4):5141-5147
All porous materials have a common limitation which is lack of strength due to the porosity. In this study, two different methods have been used to produce porous β-tricalcium phosphate (β-TCP) scaffolds: liquid-nitrogen freeze casting and a combination of the direct-foaming and sacrificial-template methods. Among these two methods, porous β-TCP scaffolds with acceptable pore size and compressive strength and defined pore-channel interconnectivity were successfully fabricated by the combined direct-foaming and sacrificial-template method. The average pore size of the scaffolds was in the range of 100–150 µm and the porosity was around 70%. Coating with 4 wt% alginate on porous β-TCP scaffolds led to higher compressive strength and low porosity. In order to make a chemical link between the β-TCP scaffolds and the alginate coating, silane coupling agent was used. Treated β-TCP scaffold showed improvements in compressive strength of up to 38% compared to the pure β-TCP scaffold and 11% compared to coated β-TCP scaffold.  相似文献   

9.
Organohydrogels (OHGs) are soft materials with antagonistic hydrophilic and hydrophobic domains that have great interest for many different applications. This study presents the preparation of mechanically strong OHGs with shape-memory function by incorporating semicrystalline organo-microgels within the pores of silk fibroin (SF) scaffolds. In the first step, SF cryogels with various pore diameters between 26 ± 8 and 17 ± 4 µm are synthesized by cryogelation of aqueous SF solutions at concentrations between 5 and 20 w/v%. In the second step, the pores of SF scaffolds are filled with an organogel precursor solution containing n-octadecyl acrylate (C18A), acrylic acid, N,N'-methylene(bis)acrylamide, and an initiator. Once the free-radical polymerization took place inside the pores, OHGs containing organo-microgels of various sizes are obtained. The incorporation of the organogel component in the cryogels generates crystalline areas due to the side-by-side packed C18 side chains. OHGs' melting temperature and crystallinity level can be varied from 42 to 54 °C and from 2 to 16%, respectively. The stiffness of OHGs increases from 5.9 ± 0.5 to 18 ± 1 MPa with increasing SF concentration from 5 to 20 w/v%, which is attributed to the decreasing pore size of the cryogels and increasing thickness of the pore walls.  相似文献   

10.
Considering the role of glucosamine sulfate (GS) in the biosynthetic pathways of chondrocytes, an attempt was made to design an electrospun poly-3-hydroxybutyrate (PHB) scaffold loaded with GS to develop cartilage tissue engineering. The study was initiated using the optimal electrospun scaffold conditions for the synthesis of PHB/GS. The resulting scaffolds have shown excellent pore architectures and mechanical behavior compared to pure PHB. UV spectrophotometric analysis, for the evaluation of the GS release behavior, showed zero-order kinetics release. In vitro results indicated excellent cell viability, cell adhesion, and cell penetration of PHB/GS scaffolds compared to pure PHB.  相似文献   

11.
Innovative composites of biopolymers and nanomaterials have been exploited to fabricate wound dressings which show functional abilities to improve different stages of wound healing by a variety of mechanisms. In this study, a polymeric nanocomposite dressing is fabricated by electrospinning of a blend of sodium alginate (SA), poly vinyl alcohol (PVA) and graphene nanoplatelets (Gnp). The crosslinking of the nanofibers is done by thermal treatment followed by ionic bonding of the fibers. The crosslinked fibers are loaded by curcumin, a natural potent anti-inflammatory compound, encapsulated in monomethoxy poly ethylene glycol-oleate micelles/polymersomes (NCur). Results indicate that by incorporation of Gnp and NCur into the SA/PVA scaffold the tensile strength is not changed (~7 MPa) but the elongation to break and toughness of the scaffolds significantly increase from 11.25±2.6 and 50.56 to 35.5±5.1% and 125.9 Jm-3, respectively. The scaffolds support the controlled release of curcumin for 24 h in vitro. Biocompatibility of the scaffolds has been confirmed by cell viability assay on mouse fibroblast cells. Overall, the findings demonstrate the potential applications of the spun fibers for wound dressing purposes.  相似文献   

12.
《Ceramics International》2023,49(2):1987-1996
Chitosan-sodium alginate/bioactive glass (CSB) composite cartilage scaffold with outstanding in vitro mineralization property and cytocompatibility is synthesized by freeze drying method. The effect of bioactive glass (BG) addition on the microstructure, porosity, swelling/degradation ratio, in vitro mineralization property and cytocompatibility of CSB scaffold is investigated by the characterization techniques of SEM, XRD, FTIR and BET. Results showed that CSB composite cartilage scaffold had a three-dimensional (3D) porous structure, and both porosity and average pore size met the requirements of cartilage tissue repair. Among, the typical CSB-1.0 had the largest overall pore size and lowest compressive modulus (1.083 ± 0.002 MPa). As the amount of BG increased, pore volume and porosity of CSB scaffolds gradually decreased, and the swelling and degradation ratios gradually reduced. After immersing in SBF for 3 d, cauliflower like hydroxyapatite (HA) was formed on CSB surface, indicating that the scaffold had good in vitro mineralization property. Moreover, the introduction of BG into the composite scaffold can improve the relative cell viability of MC3T3-E1 cells, and CSB-1.0 has the strongest ability to promote the proliferation of cells. Therefore, the as-obtained CSB scaffold can be used as a strong candidate for cartilage tissue engineering scaffold to meet clinical needs.  相似文献   

13.
《Ceramics International》2017,43(15):11780-11785
Porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds with a uniform unidirectional pore structure were successfully fabricated by an ice-templating method by using Ca-deficient HA whiskers and phosphate bioglass. HA whiskers showed good dispersibility in the slurry and favoured the formation of interconnected pores in the scaffolds. Addition of bioglass powders enhanced the material sintering process and the phase transformation of Ca-deficient HA to β-TCP. Calcium-phosphate-based scaffolds with a composition from HA to an HA/β-TCP complex could be obtained by controlling the freezing moulding system and slurry composition. The fabricated scaffolds had a porosity of 75–85%, compressive strength of 0.5–1.0 MPa, and a pore size range of 130–200 µm.  相似文献   

14.
Many synthetic scaffolds have been used as vascular substitutes for clinical use. However, many of these scaffolds may not show suitable properties when they are exposed to physiologic vascular environments, and they may fail eventually because of some unexpected conditions. Electrospinning technology offers the potential for controlling the composition, structure, and mechanical properties of scaffolds. In this study, a tubular scaffold (inner diameter = 4.5 mm) composed of a polylactide (PLA) fiber outside layer and a silk fibroin (SF)–gelatin fiber inner layer (PLA/SF–gelatin) was fabricated by electrospinning. The morphological, biomechanical, and biological properties of the composite scaffold were examined. The PLA/SF–gelatin composite tubular scaffold possessed a porous structure; the porosity of the scaffold reached 82 ± 2%. The composite scaffold achieved the appropriate breaking strength (1.28 ± 0.21 MPa) and adequate pliability (elasticity up to 41.11 ± 2.17% strain) and possessed a fine suture retention strength (1.07 ± 0.07 N). The burst pressure of the composite scaffold was 111.4 ± 2.6 kPa, which was much higher than the native vessels. A mitochondrial metabolic assay and scanning electron microscopy observations indicated that both 3T3 mouse fibroblasts and human umbilical vein endothelial cells grew and proliferated well on the composite scaffold in vitro after they were cultured for some days. The PLA/SF–gelatin composite tubular scaffolds presented appropriate characteristics to be considered as candidate scaffolds for blood vessel tissue engineering. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.

Medicinal plants such as Calendula officinalis (C. officinalis) are commonly used for skin wounds’ treatment. On the other hand, gum arabic (GA) has a lot of potential for use in wound healing because of its unique physio-chemical properties. Wound healing activity of gum arabic (GA) and Calendula officinalis (C. officinalis) along with good mechanical properties of poly (ε-caprolactone) (PCL) can produce a suitable nanofibrous scaffold for skin tissue engineering as well as wound dressing application. In this study, PCL/C. officinalis/GA nanofibrous scaffolds with diameter distribution in the range of 85–290 nm were prepared via electrospinning. Characteristics of the nanofibrous scaffolds, i.e., morphology, scaffold compounds, porosity, mechanical and antibacterial properties, hydrophilicity and degradability in phosphate buffer saline (PBS) were investigated. Cell viability and proliferation of scaffolds were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. Results indicated that hydrophilicity of the PCL/C. officinalis/GA scaffolds was higher than the PCL scaffold. The tensile strength and elongation of the PCL/C. officinalis/GA scaffolds were in the range of 2.13–4.41 MPa and 26.37–74.37%, respectively, which are very suitable for skin tissue engineering. The porosity of the scaffolds was higher than 60% and was appropriate for the proliferation of fibroblast cells. The nanocomposite scaffold also showed suitable degradability and antimicrobial activity. Moreover, cell culture indicated that GA and C. officinalis promoted cell attachment and proliferation. It can be concluded that the nanofibrous calendula-loaded PCL/GA scaffolds are well suited for regenerating skin.

  相似文献   

16.
《Ceramics International》2015,41(4):5894-5902
The biodegradable ceramic scaffolds with desirable pore size, porosity and mechanical properties play a crucial role in bone tissue engineering and bone transplantation. A novel porous β-dicalcium silicate (β-Ca2SiO4) ceramic scaffold was prepared by sintering the green body consisting of CaCO3 and SiO2 at 1300 °C, which generated interconnected pore network with proper pore size of about 300 μm and high compressive strength (28.13±5.37–10.36±0.83 MPa) following the porosity from 53.54±5.37% to 71.44±0.83%. Porous β-Ca2SiO4 ceramic scaffolds displayed a good biocompatibility, since human osteoblast-like MG-63 cells and goat bone mesenchymal stem cells (BMSCs) proliferated continuously on the scaffolds after 7 d culture. The porous β-Ca2SiO4 ceramic scaffolds revealed well apatite-forming ability when incubated in the simulated body fluid (SBF). According to the histological test, the degradation of porous β-Ca2SiO4 ceramic scaffolds and the new bone tissue generation in vivo were observed following 9 weeks implantation in nude mice. These results suggested that the porous β-Ca2SiO4 ceramic scaffolds could be potentially applied in bone tissue engineering.  相似文献   

17.
Porous ceramic scaffolds are synthetic implants, which support cell migration and establish sufficient extracellular matrix (ECM) and cell-cell interactions to heal bone defects. Hydroxyapatite (HA) scaffolds is one of the most suitable synthetic scaffolds for hard tissue replacement due to their bioactivity, biocompatibility and biomimetic features. However, the major disadvantages of HA is poor mechanical properties as well as low degradability rate and apatite formation ability. In this study, we developed a new method to improve the bioactivity, biodegradability and mechanical properties of natural hydroxyfluorapatite (HFA) by applying two-step coating process including ceramic and polymer coats. The structure, morphology and bioactivity potential of the modified and unmodified nanocomposite scaffolds were evaluated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy dispersive spectroscopy (EDS). The scaffold with optimized mechanical properties was HFA-30?wt%HT (HT stands for hardystonite) with a total porosity and pore size of 89?±?1 and 900–1000?µm, respectively. The compressive modulus and strength of HFA (porosity ~ 93?±?1) were improved from 108.81?±?11.12–251.45?±?12.2?MPa and 0.46?±?0.1–1.7?±?0.3?MPa in HFA-30?wt%HT sample, respectively. After applying poly(ε-caprolactone fumarate) (PCLF) polymer coating, the compressive strength and modules increased to 2.8?±?0.15 and 426.1?±?15.14?MPa, respectively. The apatite formation ability of scaffolds was investigated using simulated body fluid (SBF). The results showed that applying the hardystonite coating improve the apatite formation ability; however, the release of ions increased the pH. Whereas, modified scaffolds with PCLF could control the release of ions and improve the apatite formation ability as well.  相似文献   

18.
The present work focused on the preparation of CEL2 bioactive glass (SiO2–P2O5–CaO–MgO–K2O–Na2O) scaffolds loaded with chitosan microspheres. Chitosan microspheres, with a mean particle size of 0.55 μm ± 0.25 μm and loaded with acetaminophen, were obtained through the water-in-oil single emulsion solvent evaporation method and were adhered to the surface of the scaffolds by a simple dip-coating technique. The characterization of the microsphere-loaded scaffolds, before and after immersion in simulated body fluid (SBF), was performed by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy. In vitro bioactivity was performed for 21 days. The glass-ceramic microsphere-loaded scaffolds showed more than 70% interconnected porosity and an average compressive strength of 1.2 ± 0.43 MPa after immersion in SBF. They also showed the formation of a hydroxyapatite layer from the first day of immersion in SBF, demonstrating their high bioactivity. The microspheres were shown to be homogeneously dispersed on the scaffold surfaces. After 120 hours, the biologic tests showed good fibroblast cell proliferation onto the scaffolds. The encapsulated drug in the microspheres was released by diffusion in a sustained manner (90% and 99% in 200 hours). The results suggest that scaffolds have a promising role in applications of bone tissue engineering.  相似文献   

19.
This work deals with the additive manufacturing and characterization of hydroxyapatite scaffolds mimicking the trabecular architecture of cancellous bone. A novel approach was proposed relying on stereolithographic technology, which builds foam-like ceramic scaffolds by using three-dimensional (3D) micro-tomographic reconstructions of polymeric sponges as virtual templates for the manufacturing process. The layer-by-layer fabrication process involves the selective polymerization of a photocurable resin in which hydroxyapatite particles are homogeneously dispersed. Irradiation is performed by a dynamic mask that projects blue light onto the slurry. After sintering, highly-porous hydroxyapatite scaffolds (total porosity ~0.80, pore size 100-800 µm) replicating the 3D open-cell architecture of the polymeric template as well as spongy bone were obtained. Intrinsic permeability of scaffolds was determined by measuring laminar airflow alternating pressure wave drops and was found to be within 0.75-1.74 × 10−9 m2, which is comparable to the range of human cancellous bone. Compressive tests were also carried out in order to determine the strength (~1.60 MPa), elastic modulus (~513 MPa) and Weibull modulus (m = 2.2) of the scaffolds. Overall, the fabrication strategy used to print hydroxyapatite scaffolds (tomographic imaging combined with digital mirror device [DMD]-based stereolithography) shows great promise for the development of porous bioceramics with bone-like architecture and mass transport properties.  相似文献   

20.
《Polymer Composites》2017,38(12):2829-2840
The biocompatible polymer films show potential as an alternative to gels and patches used for topical delivery of therapeutics and cosmetics. The physical strength and antimicrobial activity of polymer films are important attributes for their topical applicability. Here, we have investigated the physical properties and antibacterial activity of six commonly used film forming polymers before and after formation of nanocomposites with gold nanoparticles (AuNP). The blank and AuNP loaded polymer films were prepared by solvent casting method and characterized for thickness, tensile strength, burst strength, skin adhesion strength, degree of swelling, and porosity. The antibacterial activity of the composite films was evaluated by zone‐of‐inhibition and spectrophotometric growth inhibition method against Staphylococcus aureus and Escherichia coli . The physical characterization showed that chitosan films casted using 1.5% w/w resulted in 76 MPa of tensile strength, while zein films required 40% w/w to show 23 MPa of tensile strength. The AuNP (250 μM; 35 nm) loaded polymer films showed significantly (p < 0.05) greater burst strength and skin adhesion strength compared with respective blank films. Among the polymers tested, only blank films of chitosan and zein showed antibacterial activity. On the other hand, all the AuNP loaded polymer films showed significantly (p < 0.05) greater antibacterial activity. The AuNP loaded chitosan film showed E. coli growth inhibition similar to tetracycline. Taken together, chitosan‐ and zein‐AuNP nanocomposite films showed better physical properties and antibacterial activity. POLYM. COMPOS., 38:2829–2840, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号