首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用了一个根据球床模块堆(Pebble Bed Modular Reactor,PBMR)用核石墨材料辐照性能数据编写的用户自定义材料模型(User defined Material model,UMAT),按照美国橡树岭国家实验室(Oak Ridge National Laboratory,ORNL)的液态燃料熔盐试验堆(Molten Salt Reactor Experiment,MSRE)用核石墨构件尺寸,为钍基熔盐堆(Thorium-based Molten Salt Reactor,TMSR)设计了一款方型核石墨构件。利用新编UMAT对该核石墨构件进行了初步的应力分析。分析结果表明,在没有预制裂纹的情况下辐照梯度越大核石墨构件中心区域最大主应力值越大,构件的断裂位置可能出现在构件中心位置处;对于有V型凹口预制裂纹的情况,应力集中部位均出现在预制裂纹尖端附近,这将可能导致裂纹尖端附近出现裂纹扩展,从而引起构件断裂失效。  相似文献   

2.
Graphite is used as a moderator, reflector and structural component in pebble bed and prism High Temperature Reactors (HTRs). It is fortunate to reactor designers that irradiated graphite shows remarkably high creep behaviour under the influence of fast neutron irradiation at temperatures far below those required for significant creep strains to be generated in unirradiated graphite. This creep behaviour is important in the design of nuclear graphite reactor cores because the self-induced shrinkage stresses generated in typical core components during irradiation can be relieved. However, there are no reliable data on high fluence irradiation creep and the mechanistic understanding of the irradiation creep is insufficiently developed to reliably extrapolate to the high fluences expected of graphite in future HTR designs. The understanding of irradiation creep is further complicated because it has been experimentally observed that irradiation creep strain in graphite modifies other properties in particular the coefficient of thermal expansion. In addition modified changes in Young's modulus in crept specimens have been reported and it has also been postulated that irradiation creep may also modify dimensional change. The assessment of irradiation creep in graphite components is based on empirical laws derived from data obtained from small samples irradiated in a materials test reactor. However, due to the complicated irradiation rigs required and the amount of dimensional and property measurements needed to be taken, constant stress irradiation creep experiments are difficult and very expensive to carry out successfully. However, restrained creep experiments are simple to implement, less expensive and can be easily included as part of other, more conventional irradiation graphite experimental programmes. However, in the past, the disadvantage of these experiments has been that the results have been difficult to interpret using the then available analytical methods. In this paper the restrained creep experiment is revisited and analysed numerically and the possible benefit of using a restrained creep experiment in future graphite irradiation experiments is investigated. It is shown that a numerical simulation of the restrained creep experiment behaviour would be an essential tool to ensure that the stress within the specimen remains within defined limits so that specimen failure can be avoided.  相似文献   

3.
A stress analysis for a hypothetical nuclear graphite moderator brick is presented, considering dimensional and other property changes due to fast neutron irradiation, to illustrate the relationship between the change in moderator brick bore profile and dimensional change of the material. The results give the stresses and deformations of the brick during operation and at shutdown, with the effect of irradiation creep on the deformation of the brick also considered. The analyses provide information useful to reactor designers and operators for planning graphite monitoring campaigns.  相似文献   

4.
Graphite is a widely used material in nuclear reactors, especially in high temperature gascooled reactors (HTRs), in which it plays three main roles: moderator, reflector and structure material. Irradiation-induced creep has a significant impact on the behavior of nuclear graphite as graphite is used in high temperature and neutron irradiation environments. Thus the creep coefficient becomes a key factor in stress analysis and lifetime prediction of nuclear graphite. Numerous creep models have been established, including the visco-elastic model, UK model, and Kennedy model. A Fortran code based on user subroutines of MSC.MARC was developed in INET in order to perform three-dimensional finite element analysis of irradiation behavior of the graphite components for HTRs in 2008, and the creep model used is for the visco-elastic model only. Recently the code has been updated and can be applied to two other models—the UK model and the Kennedy model. In the present study, all three models were used for calculations in the temperature range of 280–450 °C and the results are contrasted. The associated constitutive law for the simulation of irradiated graphite covering properties, dimensional changes, and creep is also briefly reviewed in this paper. It is shown that the trends of stresses and life prediction of the three models are the same, but in most cases the Kennedy model gives the most conservative results while the UK model gives the least conservative results. Additionally, the influence of the creep strain ratio is limited, while the absence of primary creep strain leads to a great increase of failure probability.  相似文献   

5.
核级石墨是高温气冷堆重要的慢化剂、反射层和结构材料,其氧化腐蚀性能对反应堆安全运行至关重要,因此已成为核材料学科的研究热点之一。本文综述了国内外在核级石墨氧化腐蚀领域的研究现状,总结了核石墨氧化的化学动力学模型、失重率影响因子模型以及模拟计算模型,提出了高温气冷堆用石墨材料氧化腐蚀的研究方向。  相似文献   

6.
Shrinkage and thermal stresses are induced into graphite components when they are irradiated in nuclear reactor cores. These stresses have to be taken into account in the reactor design and subsequent safety case assessments. This is usually done using graphite irradiation constitutive models programmed into a finite element code. The models use empirical data for the irradiation induced property and dimensional change, which are obtained from graphite material test reactor programmes. The dimensional change in nuclear graphite is one of the most important strains induced by the irradiation fluence. In this paper the effect of two different numerical methods to calculate the dimensional change strain is examined. Then the effect on the predicted stress using two different empirical models for dimensional change is studied. The solutions show that although the difference between two models is small, there are considerable differences in the stress profile.  相似文献   

7.
石墨由于其高中子散射截面和低中子吸收截面特性,被广泛应用于第四代高温气冷堆中作为慢化剂、反射层和堆芯结构,故保证其结构完整性对反应堆的安全运行非常重要。由于石墨材料强度分散,概率论方法评价其失效较常用的确定论评价方法更为合适。目前,美国ASME规范采用的概率方法主要针对NBG-18这种大颗粒石墨,对我国高温气冷堆核电站工程项目采用的细颗粒石墨IG-110的适用性未知。同时,我国成都碳素生产的高温堆备选石墨NG-CT-01颗粒大小与IG-110相似,也为细颗粒石墨。因此,文章研究ASME规范概率方法对细颗粒石墨的适用性,并通过实验数据加以验证。结果表明,对于细颗粒石墨,ASME规范过于保守,低估了材料的强度性能。  相似文献   

8.
The thermal conductivity of graphite components used as in-core components in high-temperature gascooled reactors (HTGRs) is reduced by neutron irradiation during reactor operation. The reduction in thermal conductivity is expected to be reversed by thermal annealing when the irradiated graphite component is heated above its original irradiation temperature. In this study, to develop an evaluation model for the thermal annealing effect on the thermal conductivity of IG-110 graphite for the HTGRs, the thermal annealing effect evaluated quantitatively at irradiation temperatures of up to 1,200°C and neutron fluences of up to 1.5 dpa. Moreover, the thermal conductivity of IG-110 graphite was calculated by using a modified thermal resistance model considering the thermal annealing effect. The following results were obtained. (1) The thermal annealing effect on the thermal conductivity of IG-110 graphite could be evaluated quantitatively and a thermal annealing model was developed based on the experimental results at irradiation temperatures of up to 1,200°C and neutron fluences of up to 1.5 dpa. (2) The thermal conductivities of IG-110 graphite calculated by using the modified thermal resistance model considering the thermal annealing effect showed good agreement with experimental measurements. This study has shown that it is possible to evaluate the annealed thermal conductivity of IG-110 graphite by using the modified thermal resistance model at irradiation temperatures of 550–1150°C and irradiation fluences of up to 1.5 dpa.  相似文献   

9.
Graphite materials are used as core components in the High-Temperature Gas-Cooled Reactor (HTGR) and Very High Temperature Reactor (VHTR). The authors prepared technical documents for design, material, products, in-service inspection and maintenance of the graphite components for the HTGR/VHTR, which were summarized as a draft of standard for the graphite components through discussion made in a “Special committee on research on preparation for codes for graphite components in HTGR” set up within AESJ. The draft of standard contains graphical expressions for the irradiated material properties of IG-110 graphite. It is possible to use the graphical expressions for the components design of VHTR. The graphs were obtained based on the interpolation and extrapolation of the irradiation data. The irradiation-induced dimensional change of IG-110 graphite was obtained through the interpolation and extrapolation of the irradiation data with a quadratic equation of fast neutron fluence. The irradiation data for H-451 and ATR-2E graphites were used for the evaluation of the interpolation and extrapolation of irradiation data for IG-110. It was shown in this study that the proposed interpolation and extrapolation method is reasonable for IG-110 with regard to the database available at present.  相似文献   

10.
The response of a 14 MeV neutron-based prompt gamma neutron activation analysis (PGNAA) system, i.e.the prompt gamma-rays count rate and the average thermal neutron flux, is studied with a large concrete sample and with a homogeneous large sample, which is made of polyethylene and metal with various concentrations of hydrogen and cadmium using the MCNP-5 (Monte Carlo N-Particle) code. The average thermal neutron flux is determined by the analysis of the prompt gamma-rays using the thermal neutron activation of hydrogen in the sample, and the thermal and fast neutron activation of carbon graphite irradiation chamber of the PGNAA-system. Our results demonstrated that the graphite irradiation chamber of the PGNAA-system fairly operates, and is useful to estimate the average thermal neutron flux of large samples with various compositions irradiated by 14 MeV neutrons.  相似文献   

11.
A review is presented of the experimental and theoretical studies of fast neutron irradiation creep in reactor graphite carried out by the UKAEA Reactor Group. The studies have covered the effect of varying graphite type, oxidation, stress level and boron doping. The results are shown to accord better with a dislocation pinning-unpinning model of dislocation glide, rather than the Cottrell model often assumed.  相似文献   

12.
Measurements using nuclear emulsions have been made on the neutron spectra and on the fine structure of neutron fluxes in the cell of the I-4 core of the fast critical assembly at the Japan Atomic Energy Research Institute. The I-4 core is a graphite-diluted fast core with 3:1 volume ratio of 20% enriched metallic uranium and graphite. The nuclear emulsions were irradiated in two typical patterns of arrangement of the cell (systems with graphite plates (a) bunched and (b) distributed among fuel plates).

For the distributed graphite plate system a marked discrepancy was found between the direct measurements and calculations based on the Monte Carlo method. This is attributed to anisotropy in the incident neutron flux due to the parallel plate arrangement of the simulated materials. It is concluded that Reines' formula requires correction to amount for such anisotropy, even when the emulsions are irradiated at the core center. A simple method for treating this anisotropy is proposed for use in fine structure analysis. The method utilizes, in part, the calculated results.  相似文献   

13.
为推广隐藏爆炸物检测装置在反恐领域的应用,对快中子辐照炸药、食品及药品的安全性进行了分析。通过蒙特卡罗方法建立了装置的快中子辐照炸药安全性评估模型。通过能量沉积计算及炸药起爆机理分析可知,快中子辐照炸药不会产生爆炸的危险。采用剂量分析法对快中子辐照食品及药品的安全性进行了分析,结果表明,在隐藏爆炸物检测装置的快中子辐照条件下,食品及药品的辐照剂量在国家和国际限定的标准内,快中子辐照食品及药品的安全性是可接受的。  相似文献   

14.
The purpose of the ECRIX-H experiment is to study the behaviour of a composite ceramic target made of AmO1.62 microdispersed in an MgO matrix irradiated for 318 EFPD in the Phenix sodium-cooled fast reactor (SFR), in a specific carrier sub-assembly equipped with annular blocks of CaHx acting as a neutron moderator. Results indicate that magnesia-based inert matrix targets display satisfactory behaviour and moderate swelling under irradiation, even for significant quantities of helium produced and a high burn-up. On this basis, the design of transmutation fuel pins for recycling of minor actinides (MA) in accelerator-driven systems (ADS) or in fast neutron reactors (FR) could be optimised so as to increase their performance level (initial MA content, burn-up, etc.).The measured Am fission rate (25 at.%) was found to be lower than that predicted by neutronic simulations probably due to the inaccuracies linked to the complexity of neutron modelling and the uncertainties on nuclear data related to moderated neutron spectrum. In addition, as most of the initial Am transmuted into Pu under irradiation, a PuOx-type phase was created within the initial AmO1.62 particles, leading to the incomplete dissolution of the irradiated targets under standard reprocessing conditions. This issue will have to be considered and investigated in greater detail for all transmutation fuels and targets devoted to the multi-recycling of MA.  相似文献   

15.
Capacitor-grade polypropylene films were irradiated in a 2-MW thermal nuclear reactor and exposed to fast neutron radiation at a flux rate of 2.6×1012 neutron/cm2 s and gamma radiation at a level of 107 rad/h. The postirradiation effects on changes in the electrical and chemical properties of the films were studied for irradiation times up to 10 h. The electrical properties were DC and AC breakdown voltages, life under pulsed voltage stress, dielectric permittivity, dielectric losses, and volume resistivity. Chemical analysis was performed using the infrared spectroscopy technique. Small changes were detected in the dielectric strength, dielectric properties, and volume resistivity of the film. These changes are believed to be caused by oxidation of the polypropylene film, as was evidenced by the infrared spectra showing an increase in the carbonyl absorption peak at 1720 cm-1  相似文献   

16.
为分析快中子辐照和高温等条件下石墨砖在整修寿期内的力学行为,采用改编的ADINA和ADINAT程序,计算了10MW高温气冷实验堆石墨砖受快中子辐照后所产生的变形和应力历史。计算结果表明,改编后的ADINA和ADINAT程序考虑了温度和辐照条件下多个参数的变化,可以用来分析石墨砖在辐照条件下的应力和变形。  相似文献   

17.
There is one nuclear power plant (NPP) in Lithuania – the Ignalina NPP – which is under decommissioning now. The Ignalina NPP has two units with RBMK-1500 reactors, which are the most powerful and the most advanced versions of RBMK-type reactor design. Unit 1 of the Ignalina NPP was shut down at the end of 2004 and Unit 2 was shut down at the end of 2009. RBMK is a water-cooled graphite-moderated channel-type power reactor and the decommissioning of these reactors faces specific challenges for proper characterisation and disposal of irradiated reactor graphite.Apart from radiological inventory, the spatial distribution of radionuclides in the reactor graphite is also very important because it could indicate the possibilities for decontamination/treatment of the irradiated graphite. This is important for consideration of the near surface disposal option for irradiated graphite, as without treatment it usually does not meet the waste acceptance criteria.Based on that, the work presented in this paper is focused on the modelling of the induced activity spatial distribution in the Ignalina NPP RBMK-1500 reactor graphite components: blocks and rings/sleeves. The modelling was performed with MCNP and SCALE computer codes and consisted of two mains stages: modelling of the neutron flux in the reactor graphite components, and then modelling of the neutron activation in them using the already modelled neutron flux. In such a way, the spatial induced activity distribution in the analysed reactor components was obtained. Modelling results show that the thermal neutron flux is more intensive in the outer radial regions of the graphite components and this, in general, results in higher induced activities there.  相似文献   

18.
Irradiation creep constitutive equations, which were developed in Part I, are used here to analyze in-reactor creep and swelling data obtained ca. 1977-1979 as part of the US breeder reactor program. The equations were developed according to the principles of incremental continuum plasticity for the purpose of analyzing data obtained from a novel irradiation experiment that was conducted, in part, using Type 304 stainless steel that had been previously irradiated to significant levels of void swelling. Analyses of these data support an earlier observation that all stress states, whether tensile, compressive, shear or mixed, can affect both void swelling and interactions between irradiation creep and swelling. The data were obtained using a set of five unique multiaxial creep-test specimens that were designed and used for the first time in this study. The data analyses demonstrate that the constitutive equations derived in Part I provide an excellent phenomenological representation of the interactive creep and swelling phenomena. These equations provide nuclear power reactor designers and analysts with a first-of-its-kind structural analysis tool for evaluating irradiation damage-dependent distortion of complex structural components having gradients in neutron damage rate, temperature and stress state.  相似文献   

19.
A new thermal/irradiation stress analysis code “VIENUS” has been developed for the graphite block in the High-Temperature Engineering Test Reactor (HTTR). The VIENUS is a two- dimensional finite element visco-elastic analysis code to take account of graphite behavior under irradiation in detail. In the analysis, the effects of both fast neutron fluence and temperature on material properties are considered.

The code has been evaluated by the irradiation test results of the Peach Bottom fuel elements to confirm the thermal/irradiation stresses in the graphite block. It is clarified that the calculated results are able to estimate a tendency of the test results, and that both the irradiation- induced creep and dimensional change are the most important parameters in the thermal/irradiation stress analysis. From the present study, it is suggested that the VIENUS code is a useful tool to evaluate the thermal/irradiation stresses in the HTTR graphite blocks.  相似文献   

20.
Pyrocarbon is used as a coating material in the fuel of high-temperature nuclear reactors, and a thorough understanding of its irradiation behaviour includes a knowledge of its ability to creep under fast neutron irradiation. An experiment is described which demonstrates fast neutron-induced creep of a pyrolytic carbon under constant applied stress. This differs from previous work which has obtained creep ductility data from restrained shrinkage tests. The specimens were centre-loaded discs freely supported at the rim, thus subjected to a constant biaxial bend stress. On each specimen, elastic and plastic strains were produced and measured using the same geometry and loading arrangement, to allow the creep strain to be expressed simply in terms of initial elastic strain units. Results were obtained on specimens of initial density 1.95 g/cm and 1.64 g/cm3 up to a fast neutron dose of 4 × 1020 n/cm2 (DNE) at a temperature of 1000°C. The low-density specimens showed both the greater shrinkage and the greater creep strain, and average creep rates were 0.5 and 1.0 elastic units per 1020 n/cm2 (DNE) for the high and low-density specimens respectively. These constant-stress creep results are shown to be consistent with other data on pyrocarbon. They differ from graphite creep data in that the two pyrocarbons give creep strains per unit initial elastic strain which depend on their initial densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号